搜索

x
中国物理学会期刊
Chinese Physics Letters Chinese Physics B 物理学报 物理 中国物理学会期刊网
高级检索
  • 首页
  • 亮点文章
  • 期刊在线
    1. 优先出版
    2. 预出版
    3. 当期目录
    4. 过刊浏览
    5. 下载排行
    6. 高被引论文
    7. 高级检索
  • 专题
  • 作者中心
    1. 投稿须知
    2. 投稿查稿
    3. 版权协议
    4. 相关资料下载
    5. 论文关联数据汇交说明
    6. 稿件处理流程
    7. 常见问题
    8. 授权申请
    9. 特别约稿和绿色通道
  • 审稿中心
    1. 审稿政策
    2. 审稿常见问题
    3. 专家登录
    4. 编委登录
    5. 主编登录
    6. 编辑登录
  • 期刊简介
  • 联系我们
  • ENGLISH

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体对石墨烯的功能化改性

赵雯琪 ,  张岱 ,  崔明慧 ,  杜颖 ,  张树宇 ,  区琼荣

downloadPDF
引用本文:
Citation:
  • 专题: 等离子体物理及其材料处理
  • 编辑推荐

等离子体对石墨烯的功能化改性

赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣

Graphene modification based on plasma technologies

Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong
  • 摘要
  • 图表
  • 参考文献(120)
  • 相关文章
PDF
HTML
导出引用
  • 摘要

    等离子体态物质富含高反应活性粒子群, 包括电子、离子、自由基、光子等, 是催化或直接参与化学反应的重要因子, 在化学合成与材料改性领域有重要应用价值, 往往可以使热平衡条件下难以发生, 甚至不能发生的化学反应, 在等离子体催化下得以发生和加速. 常规条件下的石墨烯就是低反应活性物质, 往往需要在高温甚至高压和强酸强碱条件下才能发生化学反应, 对于新型石墨烯衍生材料的合成与改性是一个束缚. 而等离子体催化石墨烯反应, 可以在常温常压无腐蚀性条件下, 引发石墨烯的还原、氧化、缺陷修复、掺杂、接枝、外延生长和交联等一系列化学反应, 为石墨烯功能化改性及其新型复合材料合成提供了更多可能性, 值得深入探索. 过去十多年, 等离子体在石墨烯合成与改性方面的研究报道并不鲜见, 特色鲜明, 然而, 较多的报道停留在技术路线的尝试以及结果呈现层面, 化学反应动力学研究鲜有涉及, 本文对这些研究报道进行综合论述, 主要是对部分代表性研究结果的再报告和总结性讨论, 旨在促进相关领域的深入研究.
      关键词:
    • 石墨烯 / 
    • 等离子体 / 
    • 表面改性 / 
    • 掺杂 / 
    • 催化 

    Abstract

    Plasma contains highly reactive species, including electrons, ions, radicals, photons, etc., which are critical for catalyzing or directly participating in chemical reactions. Plasma is a highly efficient tool in chemical synthesis and material modification, since it can make the chemical reactions that are difficult or even impossible to occur under thermal equilibrium conditions take place and accelerate through its catalysis. The chemical reactivity of graphene under conventional conditions is low, which means that the reaction of graphene requires high temperature, high pressure and/or strong acid or alkali, thereby restricting the synthesis and modification of novel graphene-derived materials. Plasma-assisted graphene reaction can trigger a series of chemical reactions, such as reduction, oxidation, defect repair, doping, grafting, epitaxial growth and cross-linking of graphene, under ambient temperature and pressure without any corrosive conditions. It provides great potentials for the functional modification of graphene and the synthesis of graphene composites, which deserve further exploration. Over the past decade, a number of studies of graphene synthesis and modification by using plasma with distinctive characteristics have been reported. However, most of reports focused on the presentation of technical routes and corresponding results, and the research on chemical reaction kinetics is still far from being fully addressed. In this review, we make a comprehensive discussion about these reports by mainly summarizing and discussing some of the representative results, in order to promote further research in the relevant fields.
      Keywords:
    • graphene / 
    • plasma / 
    • surface modification / 
    • doping / 
    • catalysis 

    作者及机构信息

      通信作者: 张树宇, zhangshuyu@fudan.edu.cn ; 区琼荣, qrou@fudan.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51677031, 11975081)资助的课题

    Authors and contacts

      Corresponding author: Zhang Shu-Yu, zhangshuyu@fudan.edu.cn ; Ou Qiong-Rong, qrou@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51677031, 11975081)

    文章全文 : translate this paragraph

    参考文献

    [1]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192 Google Scholar

    [2]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312 Google Scholar

    [3]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song Y I, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574 Google Scholar

    [4]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30 Google Scholar

    [5]

    Muñoz R, Gómez Aleixandre C 2013 Chem. Vap. Deposition 19 297 Google Scholar

    [6]

    Chhowalla M, Teo K B K, Ducati C, Rupesinghe N L, Amaratunga G A J, Ferrari A C, Roy D, Robertson J, Milne W I 2001 J. Appl. Phys. 90 5308 Google Scholar

    [7]

    Wu Y, Qiao P, Chong T, Shen Z 2002 Adv. Mater. 14 64 3.0.CO;2-G" target="_blank"> 3.0.CO;2-G+2002" target="_new" title="Go to article in Google Scholar" class="gs">Google Scholar

    [8]

    Hiramatsu M, Shiji K, Amano H, Hori M 2004 Appl. Phys. Lett. 84 4708 Google Scholar

    [9]

    Shiji K, Hiramatsu M, Enomoto A, Nakamura M, Amano H, Hori M 2005 Diamond Relat. Mater. 14 831 Google Scholar

    [10]

    Tanaike O, Kitada N, Yoshimura H, Hatori H, Kojima K, Tachibana M 2009 Solid State Ionics 180 381 Google Scholar

    [11]

    Ren Z F, Huang Z P, Xu J W, Wang J H, Bush P, Siegal M P, Provencio P N 1998 Science 282 1105 Google Scholar

    [12]

    Boskovic B O, Stolojan V, Khan R U A, Haq S, Silva S R P 2002 Nat. Mater. 1 165 Google Scholar

    [13]

    Qi J L, Zheng W T, Zheng X H, Wang X, Tian H W 2011 Appl. Surf. Sci. 257 6531 Google Scholar

    [14]

    Peng K J, Wu C L, Lin Y H, Liu Y J, Tsai D P, Pai Y H, Lin G R 2013 J. Mater. Chem. C 1 3862 Google Scholar

    [15]

    Wang S M, Pei Y H, Wang X, Wang H, Meng Q N, Tian H W, Zheng X L, Zheng W T, Liu Y C 2010 J. Phys. D: Appl. Phys. 43 455402 Google Scholar

    [16]

    Wang S, Qiao L, Zhao C, Zhang X, Chen J, Tian H, Zheng W, Han Z 2013 New J. Chem. 37 1616 Google Scholar

    [17]

    Kim Y S, Lee J H, Kim Y D, Jerng S K, Joo K, Kim E, Jung J, Yoon E, Park Y D, Seo S, Chun S H 2013 Nanoscale 5 1221 Google Scholar

    [18]

    Terasawa T o, Saiki K 2012 Carbon 50 869 Google Scholar

    [19]

    Kim Y, Song W, Lee S Y, Jeon C, Jung W, Kim M, Park C Y 2011 Appl. Phys. Lett. 98 263106 Google Scholar

    [20]

    Cai M, Outlaw R A, Quinlan R A, Premathilake D, Butler S M, Miller J R 2014 ACS Nano 8 5873 Google Scholar

    [21]

    Yu K, Bo Z, Lu G, Mao S, Cui S, Zhu Y, Chen X, Ruoff R S, Chen J 2011 Nanoscale Res. Lett. 6 202 Google Scholar

    [22]

    Wang J, Zhu M, Outlaw R A, Zhao X, Manos D M, Holloway B C 2004 Carbon 42 2867 Google Scholar

    [23]

    Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo G V, Vanhulsel A, Haesendonck C V 2008 Nanotechnology 19 305604 Google Scholar

    [24]

    Tseng W S, Chen Y C, Hsu C C, Lu C H, Wu C I, Yeh N C 2020 Nanotechnology 31 335602 Google Scholar

    [25]

    Kato T, Hatakeyama R 2012 ACS Nano 6 8508 Google Scholar

    [26]

    Yang W, He C, Zhang L, Wang Y, Shi Z, Cheng M, Xie G, Wang D, Yang R, Shi D, Zhang G 2012 Small 8 1429 Google Scholar

    [27]

    Zhao J, Shaygan M, Eckert J, Meyyappan M, Rümmeli M H 2014 Nano Lett. 14 3064 Google Scholar

    [28]

    Ma Y, Jang H, Kim S J, Pang C, Chae H 2015 Nanoscale Res. Lett. 10 308 Google Scholar

    [29]

    Zhu M, Wang J, Holloway B C, Outlaw R A, Zhao X, Hou K, Shutthanandan V, Manos D M 2007 Carbon 45 2229 Google Scholar

    [30]

    Wei D, Lu Y, Han C, Niu T, Chen W, Wee A T S 2013 Angew. Chem. Int. Ed. 52 14121 Google Scholar

    [31]

    Hussain S, Kovacevic E, Berndt J, Santhosh N M, Pattyn C, Dias A, Strunskus T, Ammar M R, Jagodar A, Gaillard M, Boulmer Leborgne C, Cvelbar U 2020 Nanotechnology 31 395604 Google Scholar

    [32]

    Mouralova K, Zahradnicek R, Bednar J 2019 Diamond Relat. Mater. 97 107439 Google Scholar

    [33]

    Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y, Liu Z 2019 J. Mater. Chem. A 7 4813 Google Scholar

    [34]

    Su F, Chen G, Sun J 2019 Tribol. Int. 130 1 Google Scholar

    [35]

    Zhang H, Wu S, Lu Z, Chen X, Chen Q, Gao P, Yu T, Peng Z, Ye J 2019 Carbon 147 341 Google Scholar

    [36]

    Chu J, Han Y, Li Y, Jia P, Cui H, Duan S, Feng P, Peng X 2020 J. Phys. D: Appl. Phys. 53 325101 Google Scholar

    [37]

    Wang X, Zhang Y, Tang M, Han D, Fu E, Xue J, Zhao Z 2015 Carbon 93 230 Google Scholar

    [38]

    Gutierrez G, Le Normand F, Muller D, Aweke F, Speisser C, Antoni F, Le Gall Y, Lee C S, Cojocaru C S 2014 Carbon 66 1 Google Scholar

    [39]

    Mun J H, Lim S K, Cho B J 2012 J. Electrochem. Soc. 159 G89 Google Scholar

    [40]

    Baraton L, He Z, Lee C S, Maurice J L, Cojocaru C S, Gourgues Lorenzon A F, Lee Y H, Pribat D 2011 Nanotechnology 22 085601 Google Scholar

    [41]

    Garaj S, Hubbard W, Golovchenko J A 2010 Appl. Phys. Lett. 97 183103 Google Scholar

    [42]

    Lee J S, Jang C W, Kim J M, Shin D H, Kim S, Choi S H, Belay K, Elliman R G 2014 Carbon 66 267 Google Scholar

    [43]

    Zhao Y, Han D, Wang X, Hu Z, Chen Y, Chen Y, Zhou D, Li Y, Fu E G, Zhao Z 2019 Carbon 153 776 Google Scholar

    [44]

    Gallon H J, Tu X, Twigg M V, Whitehead J C 2011 Appl. Catal., B 106 616 Google Scholar

    [45]

    Wu H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D 2013 Nanotechnology 24 455401 Google Scholar

    [46]

    Major S, Kumar S, Bhatnagar M, Chopra K L 1986 Appl. Phys. Lett. 49 394 Google Scholar

    [47]

    Compton O C, Nguyen S T 2010 Small 6 711 Google Scholar

    [48]

    Gómez Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K 2007 Nano Lett. 7 3499 Google Scholar

    [49]

    Gilje S, Han S, Wang M, Wang K L, Kaner R B 2007 Nano Lett. 7 3394 Google Scholar

    [50]

    Zhou Q, Zhao Z, Chen Y, Hu H, Qiu J 2012 J. Mater. Chem. 22 6061 Google Scholar

    [51]

    Eng A Y S, Sofer Z, Šimek P, Kosina J, Pumera M 2013 Chem. Eur. J. 19 15583 Google Scholar

    [52]

    Muhammad Hafiz S, Ritikos R, Whitcher T J, Md. Razib N, Bien D C S, Chanlek N, Nakajima H, Saisopa T, Songsiriritthigul P, Huang N M, Rahman S A 2014 Sens. Actuators, B 193 692 Google Scholar

    [53]

    Cardinali M, Valentini L, Fabbri P, Kenny J M 2011 Chem. Phys. Lett. 508 285 Google Scholar

    [54]

    Yang C, Gong J, Zeng P, Yang X, Liang R, Ou Q, Zhang S 2018 Appl. Surf. Sci. 452 481 Google Scholar

    [55]

    Xu W, Wang X, Zhou Q, Meng B, Zhao J, Qiu J, Gogotsi Y 2012 J. Mater. Chem. 22 14363 Google Scholar

    [56]

    Ma Y, Wang Q, Miao Y, Lin Y, Li R 2018 Appl. Surf. Sci. 450 413 Google Scholar

    [57]

    Yang C, Yu Y, Xie Y, Zhang D, Zeng P, Dong Y, Yang B, Liang R, Ou Q, Zhang S 2019 Appl. Surf. Sci. 473 83 Google Scholar

    [58]

    Zhang D, Du Y, Yang C, Zeng P, Yu Y, Xie Y, Liang R, Ou Q, Zhang S 2021 J. Mater. Sci. 56 1359

    [59]

    Yang C, Zhang D, Zhao W, Cui M, Liang R, Ou Q, Zhang S 2020 J. Alloys Compd. 835 155334 Google Scholar

    [60]

    Liu C J, Zhao Y, Li Y, Zhang D S, Chang Z, Bu X H 2014 ACS Sustainable Chem. Eng. 2 3 Google Scholar

    [61]

    Goverapet Srinivasan S, van Duin A C T 2011 J. Phys. Chem. A 115 13269 Google Scholar

    [62]

    Kim K, Park H J, Woo B C, Kim K J, Kim G T, Yun W S 2008 Nano Lett. 8 3092 Google Scholar

    [63]

    Lu X, Yang X, Tariq M, Li F, Steimecke M, Li J, Varga A, Bron M, Abel B 2020 J. Mater. Chem. A 8 2445 Google Scholar

    [64]

    Felten A, Eckmann A, Pireaux J J, Krupke R, Casiraghi C 2013 Nanotechnology 24 355705 Google Scholar

    [65]

    Seah C M, Vigolo B, Chai S P, Mohamed A R 2016 Carbon 105 496 Google Scholar

    [66]

    Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, De Gendt S, Sels B F 2010 Nanotechnology 21 435203 Google Scholar

    [67]

    Xiao N, Dong X, Song L, Liu D, Tay Y, Wu S, Li L J, Zhao Y, Yu T, Zhang H, Huang W, Hng H H, Ajayan P M, Yan Q 2011 ACS Nano 5 2749 Google Scholar

    [68]

    Gokus T, Nair R R, Bonetti A, Böhmler M, Lombardo A, Novoselov K S, Geim A K, Ferrari A C, Hartschuh A 2009 ACS Nano 3 3963 Google Scholar

    [69]

    Nourbakhsh A, Cantoro M, Klekachev A V, Pourtois G, Hofkens J, van der Veen M H, Heyns M M, De Gendt S, Sels B F 2011 J. Phys. Chem. C 115 16619 Google Scholar

    [70]

    Lu N, Yin D, Li Z, Yang J 2011 J. Phys. Chem. C 115 11991 Google Scholar

    [71]

    Dai Y F, Ni S, Li Z Y, Yang J L 2013 J. Phys. Condens. Matter 25 405301 Google Scholar

    [72]

    Xiang H J, Wei S H, Gong X G 2010 Phys. Rev. B 82 035416 Google Scholar

    [73]

    Yan J A, Chou M Y 2010 Phys. Rev. B 82 125403 Google Scholar

    [74]

    Kutana A, Giapis K P 2009 J. Phys. Chem. C 113 14721 Google Scholar

    [75]

    Sun T, Fabris S 2012 Nano Lett. 12 17 Google Scholar

    [76]

    Xu Z, Xue K 2010 Nanotechnology 21 045704 Google Scholar

    [77]

    Barinov A, Malcioǧlu O B, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M 2009 J. Phys. Chem. C 113 9009 Google Scholar

    [78]

    Zhao H, Fan S, Chen Y, Feng Z, Zhang H, Pang W, Zhang D, Zhang M 2017 ACS Appl. Mater. Interfaces 9 40774 Google Scholar

    [79]

    Huang C H, Su C Y, Lai C S, Li Y C, Samukawa S 2014 Carbon 73 244 Google Scholar

    [80]

    Feng T, Xie D, Tian H, Peng P, Zhang D, Fu D, Ren T, Li X, Zhu H, Jing Y 2012 Mater. Lett. 73 187 Google Scholar

    [81]

    Koizumi K, Boero M, Shigeta Y, Oshiyama A 2013 J. Phys. Chem. Lett. 4 1592 Google Scholar

    [82]

    Sun T, Fabris S, Baroni S 2011 J. Phys. Chem. C 115 4730 Google Scholar

    [83]

    Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805 Google Scholar

    [84]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K 2008 Science 320 356 Google Scholar

    [85]

    Hui L S, Whiteway E, Hilke M, Turak A 2017 Carbon 125 500 Google Scholar

    [86]

    Shin Y J, Wang Y, Huang H, Kalon G, Wee A T S, Shen Z, Bhatia C S, Yang H 2010 Langmuir 26 3798 Google Scholar

    [87]

    Sahoo G, Polaki S R, Ghosh S, Krishna N G, Kamruddin M 2018 J. Power Sources 401 37 Google Scholar

    [88]

    Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotechnol. 10 459 Google Scholar

    [89]

    Qi H, Li Z, Tao Y, Zhao W, Lin K, Ni Z, Jin C, Zhang Y, Bi K, Chen Y 2018 Nanoscale 10 5350 Google Scholar

    [90]

    Sugiura H, Kondo H, Higuchi K, Arai S, Hamaji R, Tsutsumi T, Ishikawa K, Hori M 2020 Carbon 170 93 Google Scholar

    [91]

    Lee B J, Jeong G H 2013 Vacuum 87 200 Google Scholar

    [92]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109 Google Scholar

    [93]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335 Google Scholar

    [94]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183 Google Scholar

    [95]

    Gierz I, Riedl C, Starke U, Ast C R, Kern K 2008 Nano Lett. 8 4603 Google Scholar

    [96]

    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752 Google Scholar

    [97]

    Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H 2009 Science 324 768 Google Scholar

    [98]

    Li X, Wang H, Robinson J T, Sanchez H, Diankov G, Dai H 2009 J. Am. Chem. Soc. 131 15939 Google Scholar

    [99]

    Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H 2011 ACS Nano 5 4350 Google Scholar

    [100]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610 Google Scholar

    [101]

    Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, Dai H 2011 J. Am. Chem. Soc. 133 19668 Google Scholar

    [102]

    Pham V P, Kim K H, Jeon M H, Lee S H, Kim K N, Yeom G Y 2015 Carbon 95 664 Google Scholar

    [103]

    Wang Y, Shao Y, Matson D W, Li J, Lin Y 2010 ACS Nano 4 1790 Google Scholar

    [104]

    Lin Y P, Ksari Y, Aubel D, Hajjar Garreau S, Borvon G, Spiegel Y, Roux L, Simon L, Themlin J M 2016 Carbon 100 337 Google Scholar

    [105]

    Akada K, Terasawa T o, Imamura G, Obata S, Saiki K 2014 Appl. Phys. Lett. 104 131602 Google Scholar

    [106]

    Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y 2010 J. Mater. Chem. 20 7491 Google Scholar

    [107]

    Baraket M, Stine R, Lee W K, Robinson J T, Tamanaha C R, Sheehan P E, Walton S G 2012 Appl. Phys. Lett. 100 233123 Google Scholar

    [108]

    Dou S, Tao L, Huo J, Wang S, Dai L 2016 Energy Environ. Sci. 9 1320 Google Scholar

    [109]

    Ji W, Liu Y, Shan Z, Zhang X, Ding F, Li X 2019 Ceram. Int. 45 7095 Google Scholar

    [110]

    Elumalai S, Su C Y, Yoshimura M 2019 Front. Mater. 6 216 Google Scholar

    [111]

    Abdelkader-Fernández V K, Domingo Garcia M, Lopez Garzon F J, Fernandes D M, Freire C, de la Torre M D L, Melguizo M, Godino Salido M L, Perez Mendoza M 2019 Carbon 144 269 Google Scholar

    [112]

    Wong C H A, Sofer Z, Klímová K, Pumera M 2016 ACS Appl. Mater. Interfaces 8 31849 Google Scholar

    [113]

    Denis P A 2010 Chem. Phys. Lett. 492 251 Google Scholar

    [114]

    Denis P A 2013 Comput. Mater. Sci. 67 203 Google Scholar

    [115]

    Chu K, Wang F, Tian Y, Wei Z 2017 Electrochim. Acta 231 557 Google Scholar

    [116]

    Chen X J, Bo X, Ren W H, Chen S, Zhao C 2019 Mater. Chem. Front. 3 1433 Google Scholar

    [117]

    Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196 Google Scholar

    [118]

    Dou S, Tao L, Wang R, El Hankari S, Chen R, Wang S 2018 Adv. Mater. 30 1705850 Google Scholar

    [119]

    Bazaka K, Baranov O, Cvelbar U, Podgornik B, Wang Y, Huang S, Xu L, Lim J W M, Levchenko I, Xu S 2018 Nanoscale 10 17494 Google Scholar

    [120]

    Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28 Google Scholar

    施引文献

  • 图 1  等离子体技术改性石墨烯的主要物理过程示意图

    Fig. 1.  A schematic diagram of the main physical processes of graphene modification based on plasma technologies.

    下载: 全尺寸图片 幻灯片

    图 2  (a) PECVD方法在Ni基板上生长石墨烯示意图[ 14]; (b) PECVD方法在Si/SiO2基板上生长单层石墨烯示意图[ 25]; (c) PECVD方法在Cu催化与非催化条件下生长垂直石墨烯示意图[ 28]

    Fig. 2.  A schematic diagram of (a) growing graphene on a Ni substrate by PECVD[ 14], (b) growing monolayer graphene on a Si/SiO2 substrate by PECVD [ 25] and (c) growing vertical graphene by PECVD with and without Cu catalysis [ 28].

    下载: 全尺寸图片 幻灯片

    图 3  (a) DBD等离子体还原GO示意图[ 50]; (b) CH4/Ar等离子体同步还原与修复GO过程[ 54]; (c) Ar等离子体一步还原HAuCl4与GO示意图[ 57]; (d)等离子体还原与热还原形核生长过程示意图[ 60]

    Fig. 3.  A schematic diagram of (a) GO reduction using DBD plasma[ 50], (b) GO reduction and repair using CH4/Ar plasma[ 54], (c) one-step reduction of HAuCl4 and GO using Ar plasma[ 57], (d) nucleation and growth process using plasma reduction and thermal reduction, respectively[ 60].

    下载: 全尺寸图片 幻灯片

    图 4  氧等离子体处理对石墨烯的功能化修饰 (a) SLG, BLG, FLG经氧等离子体处理后的光致发光行为及表面原子结构示意图[ 67]; (b) GO与氧等离子体处理后的GO (P-GO)表面扫描电子显微镜(scanning electron microscope, SEM)图[ 78]; (c) 碳化硅衬底(SiC)、高序热解石墨(highly oriented pyrolytic graphite, HOPG)以及SiC上的SLG和氧等离子体处理后的SLG上的水滴[ 86]; (d) 单层纳米多孔石墨烯膜的制备与性能测试示意图[ 89]

    Fig. 4.  Functional modification of graphene by oxygen plasma treatment: (a) Photoluminescence image of SLG, BLG and FLG after exposure to O2 plasma and a schematic illustration of the atomic structure of graphene after O2 plasma treatment[ 67]; (b) SEM photos of pristine GO and P-GO surfaces[ 78]; (c) water droplets on SiC, HOPG, SLG on SiC, and oxygen-plasma-etched graphene on SiC[ 86]; (d) a schematic illustration of preparation and characterization of monolayer nanoporous graphene films[ 89].

    下载: 全尺寸图片 幻灯片

    图 5  (a) 本征石墨烯的能带结构[ 92]; (b) 石墨烯狄拉克点位置和费米能级随不同掺杂类型变化原理图[ 95]; (c) 石墨烯氮掺杂的三种构型: 吡啶氮、吡咯氮和石墨氮[ 103]; (d) 氮掺杂石墨烯催化H2O2电化学还原的循环伏安曲线[ 103]; (e) 氮掺杂Co9S8/graphene的Co 2p轨道分峰谱(左)和N 1s轨道分峰谱(右)[ 108]; (f) 硫掺杂石墨烯催化OER反应极化曲线[ 112]

    Fig. 5.  (a) Band structure of pristine graphene[ 92]; (b) the position of the Dirac point and the Fermi level as a function of doping type[ 95]; (c) bonding configurations for nitrogen atoms in N-graphene[ 103]; (d) cyclic voltammograms of H2O2 on N-graphene electrode[ 103]; (e) Co 2p deconvolution spectra (left) and N 1s deconvolution spectra of N-Co9S8/graphene (right)[ 108]; (f) linear sweep voltammograms for OER of S-graphene[ 112].

    下载: 全尺寸图片 幻灯片

    玻璃钢生产厂家信阳广场标识玻璃钢彩绘雕塑湖南个性化玻璃钢雕塑供应商海南玻璃钢人物雕塑生产厂家惠州发光小品玻璃钢雕塑厂家南京天筑玻璃钢雕塑价格上海梅兰竹菊玻璃钢雕塑宝鸡不锈钢太湖石玻璃钢景观雕塑山西省玻璃钢人物雕塑衢州玻璃钢陶瓷雕塑姜太公玻璃钢雕塑江西动物玻璃钢雕塑销售厂家嘉定区玻璃钢雕塑产品介绍西宁玻璃钢雕塑在哪找泉州龙岩玻璃钢花盆汕尾玻璃钢雕塑设计商场年节美陈浙江创意玻璃钢雕塑市场蚌埠玻璃钢雕塑定制甘南抽象人物玻璃钢雕塑定制中庭商场美陈销售厂家群力玻璃钢雕塑湖北玻璃钢卡通雕塑橘子定做芜湖多彩玻璃钢雕塑花都玻璃钢人物雕塑来图定制民俗文化玻璃钢雕塑陕西方形玻璃钢花盆上海户内玻璃钢雕塑市场四川佛像玻璃钢雕塑制作楼盘玻璃钢人物雕塑代理商玻璃钢雕塑制作加工哪家专业香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警汪小菲曝离婚始末遭遇山火的松茸之乡雅江山火三名扑火人员牺牲系谣言何赛飞追着代拍打萧美琴窜访捷克 外交部回应卫健委通报少年有偿捐血浆16次猝死手机成瘾是影响睡眠质量重要因素高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了小米汽车超级工厂正式揭幕中国拥有亿元资产的家庭达13.3万户周杰伦一审败诉网易男孩8年未见母亲被告知被遗忘许家印被限制高消费饲养员用铁锨驱打大熊猫被辞退男子被猫抓伤后确诊“猫抓病”特朗普无法缴纳4.54亿美元罚金倪萍分享减重40斤方法联合利华开始重组张家界的山上“长”满了韩国人?张立群任西安交通大学校长杨倩无缘巴黎奥运“重生之我在北大当嫡校长”黑马情侣提车了专访95后高颜值猪保姆考生莫言也上北大硕士复试名单了网友洛杉矶偶遇贾玲专家建议不必谈骨泥色变沉迷短剧的人就像掉进了杀猪盘奥巴马现身唐宁街 黑色着装引猜测七年后宇文玥被薅头发捞上岸事业单位女子向同事水杯投不明物质凯特王妃现身!外出购物视频曝光河南驻马店通报西平中学跳楼事件王树国卸任西安交大校长 师生送别恒大被罚41.75亿到底怎么缴男子被流浪猫绊倒 投喂者赔24万房客欠租失踪 房东直发愁西双版纳热带植物园回应蜉蝣大爆发钱人豪晒法院裁定实锤抄袭外国人感慨凌晨的中国很安全胖东来员工每周单休无小长假白宫:哈马斯三号人物被杀测试车高速逃费 小米:已补缴老人退休金被冒领16年 金额超20万

    玻璃钢生产厂家 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化

  • [1]

    Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192 Google Scholar

    [2]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312 Google Scholar

    [3]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song Y I, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574 Google Scholar

    [4]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30 Google Scholar

    [5]

    Muñoz R, Gómez Aleixandre C 2013 Chem. Vap. Deposition 19 297 Google Scholar

    [6]

    Chhowalla M, Teo K B K, Ducati C, Rupesinghe N L, Amaratunga G A J, Ferrari A C, Roy D, Robertson J, Milne W I 2001 J. Appl. Phys. 90 5308 Google Scholar

    [7]

    Wu Y, Qiao P, Chong T, Shen Z 2002 Adv. Mater. 14 64 3.0.CO;2-G" target="_blank"> 3.0.CO;2-G+2002" target="_new" title="Go to article in Google Scholar" class="gs">Google Scholar

    [8]

    Hiramatsu M, Shiji K, Amano H, Hori M 2004 Appl. Phys. Lett. 84 4708 Google Scholar

    [9]

    Shiji K, Hiramatsu M, Enomoto A, Nakamura M, Amano H, Hori M 2005 Diamond Relat. Mater. 14 831 Google Scholar

    [10]

    Tanaike O, Kitada N, Yoshimura H, Hatori H, Kojima K, Tachibana M 2009 Solid State Ionics 180 381 Google Scholar

    [11]

    Ren Z F, Huang Z P, Xu J W, Wang J H, Bush P, Siegal M P, Provencio P N 1998 Science 282 1105 Google Scholar

    [12]

    Boskovic B O, Stolojan V, Khan R U A, Haq S, Silva S R P 2002 Nat. Mater. 1 165 Google Scholar

    [13]

    Qi J L, Zheng W T, Zheng X H, Wang X, Tian H W 2011 Appl. Surf. Sci. 257 6531 Google Scholar

    [14]

    Peng K J, Wu C L, Lin Y H, Liu Y J, Tsai D P, Pai Y H, Lin G R 2013 J. Mater. Chem. C 1 3862 Google Scholar

    [15]

    Wang S M, Pei Y H, Wang X, Wang H, Meng Q N, Tian H W, Zheng X L, Zheng W T, Liu Y C 2010 J. Phys. D: Appl. Phys. 43 455402 Google Scholar

    [16]

    Wang S, Qiao L, Zhao C, Zhang X, Chen J, Tian H, Zheng W, Han Z 2013 New J. Chem. 37 1616 Google Scholar

    [17]

    Kim Y S, Lee J H, Kim Y D, Jerng S K, Joo K, Kim E, Jung J, Yoon E, Park Y D, Seo S, Chun S H 2013 Nanoscale 5 1221 Google Scholar

    [18]

    Terasawa T o, Saiki K 2012 Carbon 50 869 Google Scholar

    [19]

    Kim Y, Song W, Lee S Y, Jeon C, Jung W, Kim M, Park C Y 2011 Appl. Phys. Lett. 98 263106 Google Scholar

    [20]

    Cai M, Outlaw R A, Quinlan R A, Premathilake D, Butler S M, Miller J R 2014 ACS Nano 8 5873 Google Scholar

    [21]

    Yu K, Bo Z, Lu G, Mao S, Cui S, Zhu Y, Chen X, Ruoff R S, Chen J 2011 Nanoscale Res. Lett. 6 202 Google Scholar

    [22]

    Wang J, Zhu M, Outlaw R A, Zhao X, Manos D M, Holloway B C 2004 Carbon 42 2867 Google Scholar

    [23]

    Malesevic A, Vitchev R, Schouteden K, Volodin A, Zhang L, Tendeloo G V, Vanhulsel A, Haesendonck C V 2008 Nanotechnology 19 305604 Google Scholar

    [24]

    Tseng W S, Chen Y C, Hsu C C, Lu C H, Wu C I, Yeh N C 2020 Nanotechnology 31 335602 Google Scholar

    [25]

    Kato T, Hatakeyama R 2012 ACS Nano 6 8508 Google Scholar

    [26]

    Yang W, He C, Zhang L, Wang Y, Shi Z, Cheng M, Xie G, Wang D, Yang R, Shi D, Zhang G 2012 Small 8 1429 Google Scholar

    [27]

    Zhao J, Shaygan M, Eckert J, Meyyappan M, Rümmeli M H 2014 Nano Lett. 14 3064 Google Scholar

    [28]

    Ma Y, Jang H, Kim S J, Pang C, Chae H 2015 Nanoscale Res. Lett. 10 308 Google Scholar

    [29]

    Zhu M, Wang J, Holloway B C, Outlaw R A, Zhao X, Hou K, Shutthanandan V, Manos D M 2007 Carbon 45 2229 Google Scholar

    [30]

    Wei D, Lu Y, Han C, Niu T, Chen W, Wee A T S 2013 Angew. Chem. Int. Ed. 52 14121 Google Scholar

    [31]

    Hussain S, Kovacevic E, Berndt J, Santhosh N M, Pattyn C, Dias A, Strunskus T, Ammar M R, Jagodar A, Gaillard M, Boulmer Leborgne C, Cvelbar U 2020 Nanotechnology 31 395604 Google Scholar

    [32]

    Mouralova K, Zahradnicek R, Bednar J 2019 Diamond Relat. Mater. 97 107439 Google Scholar

    [33]

    Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y, Liu Z 2019 J. Mater. Chem. A 7 4813 Google Scholar

    [34]

    Su F, Chen G, Sun J 2019 Tribol. Int. 130 1 Google Scholar

    [35]

    Zhang H, Wu S, Lu Z, Chen X, Chen Q, Gao P, Yu T, Peng Z, Ye J 2019 Carbon 147 341 Google Scholar

    [36]

    Chu J, Han Y, Li Y, Jia P, Cui H, Duan S, Feng P, Peng X 2020 J. Phys. D: Appl. Phys. 53 325101 Google Scholar

    [37]

    Wang X, Zhang Y, Tang M, Han D, Fu E, Xue J, Zhao Z 2015 Carbon 93 230 Google Scholar

    [38]

    Gutierrez G, Le Normand F, Muller D, Aweke F, Speisser C, Antoni F, Le Gall Y, Lee C S, Cojocaru C S 2014 Carbon 66 1 Google Scholar

    [39]

    Mun J H, Lim S K, Cho B J 2012 J. Electrochem. Soc. 159 G89 Google Scholar

    [40]

    Baraton L, He Z, Lee C S, Maurice J L, Cojocaru C S, Gourgues Lorenzon A F, Lee Y H, Pribat D 2011 Nanotechnology 22 085601 Google Scholar

    [41]

    Garaj S, Hubbard W, Golovchenko J A 2010 Appl. Phys. Lett. 97 183103 Google Scholar

    [42]

    Lee J S, Jang C W, Kim J M, Shin D H, Kim S, Choi S H, Belay K, Elliman R G 2014 Carbon 66 267 Google Scholar

    [43]

    Zhao Y, Han D, Wang X, Hu Z, Chen Y, Chen Y, Zhou D, Li Y, Fu E G, Zhao Z 2019 Carbon 153 776 Google Scholar

    [44]

    Gallon H J, Tu X, Twigg M V, Whitehead J C 2011 Appl. Catal., B 106 616 Google Scholar

    [45]

    Wu H, Xu C, Xu J, Lu L, Fan Z, Chen X, Song Y, Li D 2013 Nanotechnology 24 455401 Google Scholar

    [46]

    Major S, Kumar S, Bhatnagar M, Chopra K L 1986 Appl. Phys. Lett. 49 394 Google Scholar

    [47]

    Compton O C, Nguyen S T 2010 Small 6 711 Google Scholar

    [48]

    Gómez Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M, Kern K 2007 Nano Lett. 7 3499 Google Scholar

    [49]

    Gilje S, Han S, Wang M, Wang K L, Kaner R B 2007 Nano Lett. 7 3394 Google Scholar

    [50]

    Zhou Q, Zhao Z, Chen Y, Hu H, Qiu J 2012 J. Mater. Chem. 22 6061 Google Scholar

    [51]

    Eng A Y S, Sofer Z, Šimek P, Kosina J, Pumera M 2013 Chem. Eur. J. 19 15583 Google Scholar

    [52]

    Muhammad Hafiz S, Ritikos R, Whitcher T J, Md. Razib N, Bien D C S, Chanlek N, Nakajima H, Saisopa T, Songsiriritthigul P, Huang N M, Rahman S A 2014 Sens. Actuators, B 193 692 Google Scholar

    [53]

    Cardinali M, Valentini L, Fabbri P, Kenny J M 2011 Chem. Phys. Lett. 508 285 Google Scholar

    [54]

    Yang C, Gong J, Zeng P, Yang X, Liang R, Ou Q, Zhang S 2018 Appl. Surf. Sci. 452 481 Google Scholar

    [55]

    Xu W, Wang X, Zhou Q, Meng B, Zhao J, Qiu J, Gogotsi Y 2012 J. Mater. Chem. 22 14363 Google Scholar

    [56]

    Ma Y, Wang Q, Miao Y, Lin Y, Li R 2018 Appl. Surf. Sci. 450 413 Google Scholar

    [57]

    Yang C, Yu Y, Xie Y, Zhang D, Zeng P, Dong Y, Yang B, Liang R, Ou Q, Zhang S 2019 Appl. Surf. Sci. 473 83 Google Scholar

    [58]

    Zhang D, Du Y, Yang C, Zeng P, Yu Y, Xie Y, Liang R, Ou Q, Zhang S 2021 J. Mater. Sci. 56 1359

    [59]

    Yang C, Zhang D, Zhao W, Cui M, Liang R, Ou Q, Zhang S 2020 J. Alloys Compd. 835 155334 Google Scholar

    [60]

    Liu C J, Zhao Y, Li Y, Zhang D S, Chang Z, Bu X H 2014 ACS Sustainable Chem. Eng. 2 3 Google Scholar

    [61]

    Goverapet Srinivasan S, van Duin A C T 2011 J. Phys. Chem. A 115 13269 Google Scholar

    [62]

    Kim K, Park H J, Woo B C, Kim K J, Kim G T, Yun W S 2008 Nano Lett. 8 3092 Google Scholar

    [63]

    Lu X, Yang X, Tariq M, Li F, Steimecke M, Li J, Varga A, Bron M, Abel B 2020 J. Mater. Chem. A 8 2445 Google Scholar

    [64]

    Felten A, Eckmann A, Pireaux J J, Krupke R, Casiraghi C 2013 Nanotechnology 24 355705 Google Scholar

    [65]

    Seah C M, Vigolo B, Chai S P, Mohamed A R 2016 Carbon 105 496 Google Scholar

    [66]

    Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, De Gendt S, Sels B F 2010 Nanotechnology 21 435203 Google Scholar

    [67]

    Xiao N, Dong X, Song L, Liu D, Tay Y, Wu S, Li L J, Zhao Y, Yu T, Zhang H, Huang W, Hng H H, Ajayan P M, Yan Q 2011 ACS Nano 5 2749 Google Scholar

    [68]

    Gokus T, Nair R R, Bonetti A, Böhmler M, Lombardo A, Novoselov K S, Geim A K, Ferrari A C, Hartschuh A 2009 ACS Nano 3 3963 Google Scholar

    [69]

    Nourbakhsh A, Cantoro M, Klekachev A V, Pourtois G, Hofkens J, van der Veen M H, Heyns M M, De Gendt S, Sels B F 2011 J. Phys. Chem. C 115 16619 Google Scholar

    [70]

    Lu N, Yin D, Li Z, Yang J 2011 J. Phys. Chem. C 115 11991 Google Scholar

    [71]

    Dai Y F, Ni S, Li Z Y, Yang J L 2013 J. Phys. Condens. Matter 25 405301 Google Scholar

    [72]

    Xiang H J, Wei S H, Gong X G 2010 Phys. Rev. B 82 035416 Google Scholar

    [73]

    Yan J A, Chou M Y 2010 Phys. Rev. B 82 125403 Google Scholar

    [74]

    Kutana A, Giapis K P 2009 J. Phys. Chem. C 113 14721 Google Scholar

    [75]

    Sun T, Fabris S 2012 Nano Lett. 12 17 Google Scholar

    [76]

    Xu Z, Xue K 2010 Nanotechnology 21 045704 Google Scholar

    [77]

    Barinov A, Malcioǧlu O B, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M 2009 J. Phys. Chem. C 113 9009 Google Scholar

    [78]

    Zhao H, Fan S, Chen Y, Feng Z, Zhang H, Pang W, Zhang D, Zhang M 2017 ACS Appl. Mater. Interfaces 9 40774 Google Scholar

    [79]

    Huang C H, Su C Y, Lai C S, Li Y C, Samukawa S 2014 Carbon 73 244 Google Scholar

    [80]

    Feng T, Xie D, Tian H, Peng P, Zhang D, Fu D, Ren T, Li X, Zhu H, Jing Y 2012 Mater. Lett. 73 187 Google Scholar

    [81]

    Koizumi K, Boero M, Shigeta Y, Oshiyama A 2013 J. Phys. Chem. Lett. 4 1592 Google Scholar

    [82]

    Sun T, Fabris S, Baroni S 2011 J. Phys. Chem. C 115 4730 Google Scholar

    [83]

    Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805 Google Scholar

    [84]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K 2008 Science 320 356 Google Scholar

    [85]

    Hui L S, Whiteway E, Hilke M, Turak A 2017 Carbon 125 500 Google Scholar

    [86]

    Shin Y J, Wang Y, Huang H, Kalon G, Wee A T S, Shen Z, Bhatia C S, Yang H 2010 Langmuir 26 3798 Google Scholar

    [87]

    Sahoo G, Polaki S R, Ghosh S, Krishna N G, Kamruddin M 2018 J. Power Sources 401 37 Google Scholar

    [88]

    Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotechnol. 10 459 Google Scholar

    [89]

    Qi H, Li Z, Tao Y, Zhao W, Lin K, Ni Z, Jin C, Zhang Y, Bi K, Chen Y 2018 Nanoscale 10 5350 Google Scholar

    [90]

    Sugiura H, Kondo H, Higuchi K, Arai S, Hamaji R, Tsutsumi T, Ishikawa K, Hori M 2020 Carbon 170 93 Google Scholar

    [91]

    Lee B J, Jeong G H 2013 Vacuum 87 200 Google Scholar

    [92]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109 Google Scholar

    [93]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335 Google Scholar

    [94]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183 Google Scholar

    [95]

    Gierz I, Riedl C, Starke U, Ast C R, Kern K 2008 Nano Lett. 8 4603 Google Scholar

    [96]

    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752 Google Scholar

    [97]

    Wang X, Li X, Zhang L, Yoon Y, Weber P K, Wang H, Guo J, Dai H 2009 Science 324 768 Google Scholar

    [98]

    Li X, Wang H, Robinson J T, Sanchez H, Diankov G, Dai H 2009 J. Am. Chem. Soc. 131 15939 Google Scholar

    [99]

    Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H 2011 ACS Nano 5 4350 Google Scholar

    [100]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610 Google Scholar

    [101]

    Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, Dai H 2011 J. Am. Chem. Soc. 133 19668 Google Scholar

    [102]

    Pham V P, Kim K H, Jeon M H, Lee S H, Kim K N, Yeom G Y 2015 Carbon 95 664 Google Scholar

    [103]

    Wang Y, Shao Y, Matson D W, Li J, Lin Y 2010 ACS Nano 4 1790 Google Scholar

    [104]

    Lin Y P, Ksari Y, Aubel D, Hajjar Garreau S, Borvon G, Spiegel Y, Roux L, Simon L, Themlin J M 2016 Carbon 100 337 Google Scholar

    [105]

    Akada K, Terasawa T o, Imamura G, Obata S, Saiki K 2014 Appl. Phys. Lett. 104 131602 Google Scholar

    [106]

    Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y 2010 J. Mater. Chem. 20 7491 Google Scholar

    [107]

    Baraket M, Stine R, Lee W K, Robinson J T, Tamanaha C R, Sheehan P E, Walton S G 2012 Appl. Phys. Lett. 100 233123 Google Scholar

    [108]

    Dou S, Tao L, Huo J, Wang S, Dai L 2016 Energy Environ. Sci. 9 1320 Google Scholar

    [109]

    Ji W, Liu Y, Shan Z, Zhang X, Ding F, Li X 2019 Ceram. Int. 45 7095 Google Scholar

    [110]

    Elumalai S, Su C Y, Yoshimura M 2019 Front. Mater. 6 216 Google Scholar

    [111]

    Abdelkader-Fernández V K, Domingo Garcia M, Lopez Garzon F J, Fernandes D M, Freire C, de la Torre M D L, Melguizo M, Godino Salido M L, Perez Mendoza M 2019 Carbon 144 269 Google Scholar

    [112]

    Wong C H A, Sofer Z, Klímová K, Pumera M 2016 ACS Appl. Mater. Interfaces 8 31849 Google Scholar

    [113]

    Denis P A 2010 Chem. Phys. Lett. 492 251 Google Scholar

    [114]

    Denis P A 2013 Comput. Mater. Sci. 67 203 Google Scholar

    [115]

    Chu K, Wang F, Tian Y, Wei Z 2017 Electrochim. Acta 231 557 Google Scholar

    [116]

    Chen X J, Bo X, Ren W H, Chen S, Zhao C 2019 Mater. Chem. Front. 3 1433 Google Scholar

    [117]

    Rybin M, Pereyaslavtsev A, Vasilieva T, Myasnikov V, Sokolov I, Pavlova A, Obraztsova E, Khomich A, Ralchenko V, Obraztsova E 2016 Carbon 96 196 Google Scholar

    [118]

    Dou S, Tao L, Wang R, El Hankari S, Chen R, Wang S 2018 Adv. Mater. 30 1705850 Google Scholar

    [119]

    Bazaka K, Baranov O, Cvelbar U, Podgornik B, Wang Y, Huang S, Xu L, Lim J W M, Levchenko I, Xu S 2018 Nanoscale 10 17494 Google Scholar

    [120]

    Ouyang B, Zhang Y, Xia X, Rawat R S, Fan H J 2018 Mater. Today Nano 3 28 Google Scholar

  • [1] 郭晓蒙, 青芳竹, 李雪松.  石墨烯在金属表面防腐中的应用. 物理学报, 2021, 70(9): 098102. doi:  10.7498/aps.70.20210349
    [2] 张海宝, 陈强.  非热等离子体材料表面处理及功能化研究进展. 物理学报, 2021, 70(9): 095203. doi:  10.7498/aps.70.20202233
    [3] 吉建伟, 山村和也, 邓辉.  面向单晶SiC原子级表面制造的等离子体辅助抛光技术. 物理学报, 2021, 70(6): 068102. doi:  10.7498/aps.70.20202014
    [4] 胡钧, 高嶷.  界面水与催化. 物理学报, 2019, 68(1): 016803. doi:  10.7498/aps.68.20182180
    [5] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪.  氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi:  10.7498/aps.68.20191304
    [6] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨.  太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi:  10.7498/aps.65.015201
    [7] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨.  基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi:  10.7498/aps.65.018101
    [8] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超.  基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi:  10.7498/aps.65.105201
    [9] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰.  石墨烯基双曲色散特异材料的负折射与体等离子体性质. 物理学报, 2015, 64(6): 067301. doi:  10.7498/aps.64.067301
    [10] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣.  SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi:  10.7498/aps.64.078102
    [11] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光.  不同N掺杂构型石墨烯的量子电容研究. 物理学报, 2015, 64(12): 127301. doi:  10.7498/aps.64.127301
    [12] 乔文涛, 龚健, 张利伟, 王勤, 王国东, 廉书鹏, 陈鹏辉, 孟威威.  梳状波导结构中石墨烯表面等离子体的传播性质. 物理学报, 2015, 64(23): 237301. doi:  10.7498/aps.64.237301
    [13] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜.  基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台. 物理学报, 2015, 64(9): 098702. doi:  10.7498/aps.64.098702
    [14] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云.  具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应. 物理学报, 2013, 62(9): 097202. doi:  10.7498/aps.62.097202
    [15] 曹鹤飞, 刘尚合, 孙永卫, 原青云.  等离子体环境下孤立导体表面充电时域特性研究. 物理学报, 2013, 62(14): 149401. doi:  10.7498/aps.62.149401
    [16] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才.  金属催化制备石墨烯的研究进展. 物理学报, 2013, 62(2): 028201. doi:  10.7498/aps.62.028201
    [17] 董太源, 叶坤涛, 刘维清.  表面波等离子体源的发展现状. 物理学报, 2012, 61(14): 145202. doi:  10.7498/aps.61.145202
    [18] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全.  飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi:  10.7498/aps.60.025203
    [19] 顾伟超, 吕国华, 陈 睆, 陈光良, 冯文然, 张谷令, 杨思泽.  管状铝质材料的等离子体电解沉积行为研究. 物理学报, 2007, 56(4): 2337-2341. doi:  10.7498/aps.56.2337
    [20] 满宝元, 张运海, 吕国华, 刘爱华, 张庆刚, L. Guzman, M. Adami, A. Miotello.  N+离子注入聚四氟乙烯表面改性研究. 物理学报, 2005, 54(2): 837-841. doi:  10.7498/aps.54.837
目录
  • 第70卷,第9期 - 2021年05月05日
计量
  • 文章访问数:  11869
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2021-01-30
  • 上网日期:  2021-04-26
  • 刊出日期:  2021-05-05

/

返回文章
返回

玻璃钢生产厂家信阳广场标识玻璃钢彩绘雕塑湖南个性化玻璃钢雕塑供应商海南玻璃钢人物雕塑生产厂家惠州发光小品玻璃钢雕塑厂家南京天筑玻璃钢雕塑价格上海梅兰竹菊玻璃钢雕塑宝鸡不锈钢太湖石玻璃钢景观雕塑山西省玻璃钢人物雕塑衢州玻璃钢陶瓷雕塑姜太公玻璃钢雕塑江西动物玻璃钢雕塑销售厂家嘉定区玻璃钢雕塑产品介绍西宁玻璃钢雕塑在哪找泉州龙岩玻璃钢花盆汕尾玻璃钢雕塑设计商场年节美陈浙江创意玻璃钢雕塑市场蚌埠玻璃钢雕塑定制甘南抽象人物玻璃钢雕塑定制中庭商场美陈销售厂家群力玻璃钢雕塑湖北玻璃钢卡通雕塑橘子定做芜湖多彩玻璃钢雕塑花都玻璃钢人物雕塑来图定制民俗文化玻璃钢雕塑陕西方形玻璃钢花盆上海户内玻璃钢雕塑市场四川佛像玻璃钢雕塑制作楼盘玻璃钢人物雕塑代理商玻璃钢雕塑制作加工哪家专业香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警汪小菲曝离婚始末遭遇山火的松茸之乡雅江山火三名扑火人员牺牲系谣言何赛飞追着代拍打萧美琴窜访捷克 外交部回应卫健委通报少年有偿捐血浆16次猝死手机成瘾是影响睡眠质量重要因素高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了小米汽车超级工厂正式揭幕中国拥有亿元资产的家庭达13.3万户周杰伦一审败诉网易男孩8年未见母亲被告知被遗忘许家印被限制高消费饲养员用铁锨驱打大熊猫被辞退男子被猫抓伤后确诊“猫抓病”特朗普无法缴纳4.54亿美元罚金倪萍分享减重40斤方法联合利华开始重组张家界的山上“长”满了韩国人?张立群任西安交通大学校长杨倩无缘巴黎奥运“重生之我在北大当嫡校长”黑马情侣提车了专访95后高颜值猪保姆考生莫言也上北大硕士复试名单了网友洛杉矶偶遇贾玲专家建议不必谈骨泥色变沉迷短剧的人就像掉进了杀猪盘奥巴马现身唐宁街 黑色着装引猜测七年后宇文玥被薅头发捞上岸事业单位女子向同事水杯投不明物质凯特王妃现身!外出购物视频曝光河南驻马店通报西平中学跳楼事件王树国卸任西安交大校长 师生送别恒大被罚41.75亿到底怎么缴男子被流浪猫绊倒 投喂者赔24万房客欠租失踪 房东直发愁西双版纳热带植物园回应蜉蝣大爆发钱人豪晒法院裁定实锤抄袭外国人感慨凌晨的中国很安全胖东来员工每周单休无小长假白宫:哈马斯三号人物被杀测试车高速逃费 小米:已补缴老人退休金被冒领16年 金额超20万

玻璃钢生产厂家 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化