复数的三角形式与指数形式

7 篇文章 2 订阅
订阅专栏
4 篇文章 1 订阅
订阅专栏

在中学,我们已经学习过复数及其用代数形式a+bi表达的四则运算法则及算律。在大学数学中我们学习过建立在实数集合上的微积分——称为实分析;同样,在复数集合上也可以讨论函数、导数、微分、积分等问题,这就是大学数学本科(或研究生)专业里一门必修课复变函数》,因此我们有必要对复数了解得更多些。

1. 复数的三角形式

1.1 复数的幅角与模

我们知道复数a+bi对应着复平面上的点(a, b),也对应复平面上一个向量(如下图所示):

这个向量的长度叫做复数a+bi的模,记为|a+bi|,一般情况下,复数的模用字母r表示。同时,这个向量针对x轴的正方向有一个方向角,我们称为幅角,记为arg(a+bi),幅角一般情形下用希腊字母θ表示。在实轴X与虚轴Y正交的前提下:

a = r \cdot cos\Theta, b = r \cdot sin\Theta                                                                                                                                        式(1)

把它们代入复数的代数形式得:

a + bi = r\cdot cos\Theta +i\cdot r\cdot sin\Theta = r\left ( cos\Theta + i \cdot sin\Theta \right )                                                                                           式(2)

我们把式(2)叫做复数a+bi的三角形式。

1.2 复数三角形式的运算法则

引入复数三角形式的一个重要原因在于用三角形式进行乘除法、乘方、开方相对于代数形式较为简单。所以这里只介绍三角形式的乘法、除法、乘方与开方的运算法则。

1.2.1 复数的乘法

设:

Z_{1} = r_{1}\left ( cos \Theta_{1} +i sin\Theta_{1} \right )

Z_{2} = r_{2}\left ( cos \Theta_{2} +i sin\Theta_{2} \right )

则:

Z_{1} Z_{2}= \left [ r_{1}\left ( cos \Theta_{1} +i sin\Theta_{1} \right )\right ]\cdot \left [ r_{2}\left ( cos \Theta_{2} +i sin\Theta_{2} \right )\right ]

          =r_{1}r_{2}\left ( cos \Theta_{1}cos \Theta_{2} - sin\Theta_{1} sin\Theta_{2}\right )+ir_{1}r_{2}\left ( sin \Theta_{1}cos \Theta_{2} + cos\Theta_{1} sin\Theta_{2}\right )

          = r_{1}r_{2}\left [ cos\left( \Theta_{1}+\Theta_{2}\right ) + i sin\left(\Theta_{1} +\Theta_{2}\right ) \right ]

这说明,两个复数相乘等于它们的模相乘而幅角相加,这个运算在几何上可以用下面的方法进行:将向量Z_{1}的模扩大为原来的r_{2}倍,然后再将它绕原点逆时针旋转角\Theta_{2},就得到Z_{1}Z_{2}

1.2.2 复数的除法

设:

Z_{1} = r_{1}\left ( cos \Theta_{1} +i sin\Theta_{1} \right )

Z_{2} = r_{2}\left ( cos \Theta_{2} +i sin\Theta_{2} \right )

则:

Z_{1}\div Z_{1} = \frac{r_{1}\left ( cos \Theta_{1} +i sin\Theta_{1} \right )}{r_{2}\left ( cos \Theta_{2} +i sin\Theta_{2} \right )}

               =\frac{r_{1}\left ( cos \Theta_{1} +i sin\Theta_{1} \right )\left ( cos \Theta_{2} -i sin\Theta_{2} \right )}{r_{2}\left ( cos \Theta_{2} +i sin\Theta_{2} \right )\left ( cos \Theta_{2} -i sin\Theta_{2} \right )}

               =\frac{r_{1}}{r_{2}}\left [ \left ( cos \Theta_{1}cos \Theta_{2} + sin\Theta_{1} sin\Theta_{2}\right )+i\left ( sin \Theta_{1}cos \Theta_{2} - cos\Theta_{1} sin\Theta_{2}\right )\right ]

               =\frac{r_{1}}{r_{2}}\left [ cos\left( \Theta_{1}-\Theta_{2}\right ) + i sin\left(\Theta_{1} -\Theta_{2}\right ) \right ]

这说明,两个复数相除等于它们的模相除而幅角相减,这个运算在几何上可以用下面的方法进行:将向量Z_{1}的模缩小为原来的r_{2}分之一,然后再将它绕原点顺时针旋转角\Theta_{2},就得到Z_{1}\div Z_{2}

1.2.3 复数的乘方

利用复数的乘法不难得到:

Z^{n} = r^{n}\left ( cos \left ( n\Theta \right ) + i sin\left ( n\Theta \right ) \right )

这说明,复数的n次方等于它模的n次方,幅角的n倍。这个运算在几何上可以用下面的方法进行:将向量z1的模变为原来的n次方,然后再将它绕原点逆时针旋转角n\Theta,就得到Z^{n}

1.2.4 复数的开方

 对于复数Z= r\left ( cos \Theta+i sin\Theta \right ),根据代数基本定理及其推论知,任何一个复数在复数范围内都有n个不同的n次方根。

设: Z= r\left ( cos \Theta+i sin\Theta \right ) 的一个n次方根为 \omega= \rho \left ( cos \varphi +i sin\varphi \right )

那么:: \omega^{n}= \left [ \rho \left ( cos \varphi +i sin\varphi \right )\right ]^{n} = \rho^{n}\left ( cos n\varphi +i sinn\varphi \right )

所以: r=\rho^{n}, n\varphi = \Theta + 2k\pi ,\left ( k = 0,\pm 1,\pm 2,\pm 3 .... \right )

即: \rho =\sqrt[n]{r}, \varphi = \frac{\Theta + 2k\pi }{n} = \frac{\Theta }{n}+\frac{2k\pi }{n},\left ( k = 0,\pm 1,\pm 2,\pm 3 .... \right )

显然,当k0依次取到n1,所得到的角的终边互不相同,但kn开始取值后,前面的终边又周期性出现。因此,复数znn次方根为:

\omega _{k} = \sqrt[n]{r}\left ( cos\frac{\Theta + 2k\pi }{n} + i sin\frac{\Theta + 2k\pi }{n} \right ), \left ( k = 0,1,2,3 .... n-1 \right )

从求根公式可以看出,相邻两个根之间幅角相差\frac{2\pi }{n},所以复数Znn次方根均匀地分布在以原点为圆心,以它的模的n次算术根为半径的圆周上。

因此,求一个复数z的全部n次方根,可以用下面的几何手段进行:

Z= r\left ( cos \Theta+i sin\Theta \right )

先作出圆心在原点,半径为\sqrt[n]{r}的圆,然后作出角\frac{\Theta }{n}的终边,以这条终边与圆的交点为分点,将圆周n等分,那么每个等分点对应的复数就是复数Zn次方根。

2. 复数的指数形式

在对复数三角形式的乘法规则讨论中,我们发现,复数的三角形式将复数的乘法“部分地”转变成加法(模相乘,幅角相加),这种改变运算等级的现象在初等函数中有过体现,对数函数与指数函数:

a^{x}a^{y} = a^{x+y}

log_{a}\left ( xy \right ) = log_{a}\left ( x \right ) + log_{a}\left ( y \right )

前者将两个同底幂的乘积变成同底的指数相加;后者将两个真数积的对数变成两个同底对数的和。从形式上看,复数的乘法与指数函数的关系更为密切些:

Z_{1}Z_{2}= r_{1}r_{2}\left [ cos\left( \Theta_{1}+\Theta_{2}\right ) + i sin\left(\Theta_{1} +\Theta_{2}\right ) \right ]

\left ( b_{1}a^{x} \right )\cdot \left ( b_{2}a^{y} \right ) =\left ( b_{1} b_{2} \right )\cdot a^{x+y}

根据这个特点,复数Z= r\left ( cos \Theta+i sin\Theta \right )应该可以表示成某种指数形式,即复数应该可以表示成y\cdot a^{x}的形式,这里有三个问题需要解决:

1)反映复数本质特征的三个因素:模r、幅角θ、虚数单位i应各自摆放在什么位置?

2)在这些位置上它们应呈现什么形态?

3)作为指数形式的底应该用什么常数?

再重新观察下面的等式:

Z_{1}Z_{2}= r_{1}r_{2}\left [ cos\left( \Theta_{1}+\Theta_{2}\right ) + i sin\left(\Theta_{1} +\Theta_{2}\right ) \right ]

\left ( b_{1}a^{x} \right )\cdot \left ( b_{2}a^{y} \right ) =\left ( b_{1} b_{2} \right )\cdot a^{x+y}

首先,显然模r应该占据y\cdot a^{x}中系数y的位置,其次,幅角\Theta应该占据y\cdot a^{x}中指数x的位置,对于虚数单位i,如果放到系数y的位置上会怎样?

\left ( i\cdot ra^{x} \right )^{2} = -r^{2}a^{2x}

等式右边是实数,对于任意虚数而言,这是不可能的。因此幅角θ也应该占据指数的位置。这样第二个问题就产生了:它与幅角一起在指数的位置上是什么关系?(相加?相乘?)

幅角\Theta与虚数单位i是相加的关系会怎样?先考察模为1的复数cos \Theta+i sin\Theta,如果写成a^{i+\Theta }的形式,一方面由于a^{i+\Theta } =a ^{i}\cdot a^{\Theta },与\left ( ir \right )a^{\Theta }的形式差别不是很大,其次\left ( a^{i+\Theta } \right )^{n} = a^{ni+n\Theta },在复数的乘方法则中,应该仅是幅角的n倍而没有虚数单位也要n倍,所以虚数单位与幅角不应该是相加关系,而应该是相乘关系。

Z=ra^{i\Theta }

现在来审查乘法、除法和乘方法则是否吻合:

Z_{1}Z_{2}=\left ( r_{1}a^{i \Theta _{1}} \right )\left ( r_{2}a^{i \Theta _{2}}\right ) = \left ( r_{1}r_{2} \right )a^{i\left (\Theta _{1} + \Theta _{2}\right )}

Z_{1}\div Z_{2}=\left ( r_{1}a^{i \Theta _{1}} \right )\div \left ( r_{2}a^{i \Theta _{2}}\right ) = \left ( r_{1}\div r_{2} \right )a^{i\left (\Theta _{1} - \Theta _{2}\right )}

Z^{n} = \left ( ra^{i\Theta } \right )^{n} = r^{n}a^{i\left ( n\Theta\right ) }

乘除法保持“模相乘除、幅角相加减”、乘方保持“模的n次方、幅角的n倍”的本质特征,下面来解决最后一个问题:应该选用哪个常数作为底数?我们暂时将Z= r\left ( cos \Theta+i sin\Theta \right )形式化地看做r\Theta的“二元函数”,数学是“形式化的科学”,因此,一些形式化的性质应该“形式化”地保持不变。

下面我们将r\left ( cos \Theta+i sin\Theta \right ) = ra^{i\Theta }等式两边对\Theta形式化地求“偏微分”:

\frac{\partial r\left ( cos \Theta+i sin\Theta \right )}{\partial \Theta }

=r\left ( -sin \Theta+i cos\Theta \right )

=\left [ r\left ( cos\Theta + isin\Theta \right ) \right ]i

=Zi

 

\frac{\partial }{\partial \Theta }\left ( ra^{i\Theta } \right )

=r\frac{\partial a^{i\Theta }}{\partial \Theta }

=ira^{i\Theta }ln_{a}

=Zi\cdot ln_{a}

所以ln_{a} = 1,得a=e

这样我们利用不太严格的推理得到了复数的第三种表现形式——指数式

Z=a+bi = r\left ( cos\Theta + isin\Theta \right )=re^{i\Theta }

从复数的模与幅角的角度看,复数的指数形式其实是三角形式的简略化,对于指数形式的严格证明可以参读 复数的指数形式的证明

由复数的三角形式与指数形式,我们很容易得到下面的两个公式:

\left\{\begin{matrix} cos\Theta + i sin\Theta = e^{i\Theta }\\ cos\Theta - i sin\Theta = e^{-i\Theta }\\ \end{matrix}\right.

\Rightarrow\left\{ \begin{matrix} cos\Theta = \frac{e^{i\Theta } + e^{-i\Theta }}{2}\\ sin\Theta = \frac{e^{i\Theta } - e^{-i\Theta }}{2i} \end{matrix}\right.

这两个公式被统称为欧拉公式;在复数的指数形式中,令r=1\Theta = \pi,就得到下面的等式:

e^{i\pi } = -1 或者e^{i\pi } +1=0

它是数学里最令人着迷的一个公式,它将数学里最重要的五个数字就这么神秘地联系到了一起:两个超越数——自然对数的底e,圆周率\pi;三个单位——虚数单位i、自然数的乘法单位1和加法单位0。关于自然对数的底e和圆周率\pi,这里我想多说那么几句:它们是迄今为止人类所发现的两个彼此独立的超越数,尽管从理论上我们知道,超越数比有理数、代数数(可以表示为有理系数一元多项式的根的数)要多得多,但为人类所认识的超越数却仅此两个!令人不可思议的是,它们居然凭借这么一个简单关系彼此联系着。数学家们评价它是“上帝创造的公式”,我们只能看着它但却不能理解它。

3. 复数的应用

利用复数的三角形式,我们可以比较容易地解决一些数学其他领域里的问题。由于我们这门课的特点,我们仅限于在初等数学领域里举两个例子。

3.1 三角级数求和

求解\left\{\begin{matrix} cos\alpha + cos2\alpha + ... + cosn\alpha = ?\\ sin\alpha + sin2\alpha + ... + sinn\alpha = ? \end{matrix}\right.

解:令Z= cos \alpha +i sin\alpha,那么对任何自然数k有:

Z^{k} = cosk\alpha + i sink\alpha

\Rightarrow Z+Z^{2}+ ...+ Z^{n}

= \left ( cos\alpha + isin\alpha \right ) + \left ( cos2\alpha + isin2\alpha \right ) + ..... +\left ( cosn\alpha + isinn\alpha \right )

=\left(cos\alpha + cos2\alpha + ... + cosn\alpha\right) +i \left( sin\alpha + sin2\alpha + ... + sinn\alpha \right)

另一方面由等比数列的定义可知:

Z+Z^{2}+ ...+ Z^{n}

=\frac{Z(1-Z^{n})}{1-Z}

=\frac{\left ( cos\alpha +isin\alpha \right )\left [ 1-\left ( cosn\alpha + i sinn\alpha \right ) \right ]}{1- \left ( cos\alpha +i sin\alpha \right )}

=\frac{\left ( cos\alpha +isin\alpha \right )\left ( 2sin^{2}\frac{n\alpha}{2} -2isin\frac{n\alpha}{2} cos\frac{n\alpha}{2}\right )}{2sin^{2}\frac{\alpha}{2} -2isin\frac{\alpha}{2} cos\frac{\alpha}{2}}

=\frac{sin\frac{n\alpha }{2}\left ( cos\alpha +isin\alpha \right )\left ( cos\frac{n\alpha -\pi }{2} + isin\frac{n\alpha -\pi }{2}\right )}{sin\frac{\alpha }{2}\left ( cos\frac{\alpha -\pi }{2} - isin\frac{\alpha -\pi }{2}\right )}

=\frac{sin\frac{n\alpha }{2}}{sin\frac{\alpha }{2}}\left [ cos\left ( \alpha +\frac{n\alpha -\pi }{2} - \frac{\alpha -\pi }{2} \right ) + isin\left ( \alpha +\frac{n\alpha -\pi }{2} - \frac{\alpha -\pi }{2} \right )\right ]

=\frac{sin\frac{n\alpha }{2}}{sin\frac{\alpha }{2}}\left ( cos\frac{n+1}{2} \alpha + i sin\frac{n+1}{2}\alpha \right )

=\frac{sin\frac{n\alpha }{2}cos\frac{n+1}{2}\alpha }{sin\frac{\alpha }{2}}+i\frac{sin\frac{n\alpha }{2}sin\frac{n+1}{2}\alpha }{sin\frac{\alpha }{2}}

所以:

\left\{\begin{matrix} cos\alpha + cos2\alpha + ... + cosn\alpha =\frac{sin\frac{n\alpha }{2}cos\frac{n+1}{2}\alpha }{sin\frac{\alpha }{2}} \\ sin\alpha + sin2\alpha + ... + sinn\alpha =\frac{sin\frac{n\alpha }{2}sin\frac{n+1}{2}\alpha }{sin\frac{\alpha }{2}} \end{matrix}\right.

3.2 M是单位圆周  x2y2 = 1上的动点,点N与定点A(2,  0)和点M构成一个等边三角形的顶点,并且M→N→A→M成逆时针方向,当M点移动时,求点N的轨迹。

分析:此题若用一般解析几何的方法寻找点MN之间的显性关系是比较困难的。下面用复数的乘法的几何意义来寻找这种关系。

MNA对应的复数依次为:M\leftrightarrow{x}'+{y}'iN\leftrightarrow x+yiA\leftrightarrow 2

那么向量AM可以用向量ANA点逆时针旋转300度得到,用复数运算来实现这个变换就是:

\vec{AM}=\left ( cos300^{\circ}+ isin300^{\circ} \right )\cdot \vec{AN}

\Rightarrow\vec{OM} - \vec{OA}=\left ( cos300^{\circ}+ isin300^{\circ} \right )\cdot \left ( \vec{ON}-\vec{OA} \right )

\Rightarrow {x}'+{y}'i -2 = \frac{1-\sqrt{3}i}{2}\left ( x+yi-2 \right )= \frac{x+\sqrt{3}y-2}{2}+ \frac{y-\sqrt{3}x+2\sqrt{3}}{2}i

\Rightarrow \left\{\begin{matrix} {x}' = \frac{x+\sqrt{3}y+2}{2}\\ {y}'=\frac{y-\sqrt{3}x+2\sqrt{3}}{2}\\ {x}'^{2}+{y}'^{2} = 1 \end{matrix}\right.

\Rightarrow \left ( \frac{x+\sqrt{3}y+2}{2} \right )^{2} +\left ( \frac{y-\sqrt{3}x+2\sqrt{3}}{2} \right )^{2} = 1

\Rightarrow x^{2}+y^{2}-2x+2\sqrt{3}y+3=0

\Rightarrow \left ( x-1 \right )^{2}+\left ( y-\sqrt{3} \right )^{2} = 1

3.3 3. z1z2z3 是复平面上三个点ABC对应的复数,证明三角形ABC是等边三角形的充分必要条件是:

z_{1}^{2} + z_{2}^{2} + z_{3}^{2} = z_{1}z_{2}+ z_{2}z_{3}+z_{3}z_{1}

假设结论不成立:

z_{1}^{2} + z_{2}^{2} + z_{3}^{2} = z_{1}z_{2}+ z_{2}z_{3}+z_{3}z_{1}

\Rightarrow 2z_{1}^{2} + 2z_{2}^{2} +2 z_{3}^{2} = 2z_{1}z_{2}+ 2z_{2}z_{3}+2z_{3}z_{1}

\Rightarrow \left ( z_{1} - z_{2} \right )^{2} +\left ( z_{1} - z_{3} \right )^{2} +\left ( z_{2} - z_{3} \right )^{2} =0

三个向量\left ( z_{1} - z_{2} \right )\left ( z_{1} - z_{3} \right )\left ( z_{2} - z_{3} \right )均为零向量,则三个向量z_{1}z_{2}z_{3}所对应的点是同一个点,与题意不符.

复数和复变指数函数和三角函数和欧拉公式关系及几何直观意义
及时总结
06-26 2万+
证明欧拉公式 如果这么看自变量:θ=ωt\theta= \omega t θ=ωt那么就可以发现欧拉公式的几何意义。 复数的表示形式 通过下面对比可以发现,用复指数表示复数在几何上更直观点。 复数的运算 1.加法运算 设z1=a+bi,z2=c+di是任意两个复数, 则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。 几何上满足平行四边形法则。 2.乘法运算 设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数, 那么它们的积(a+bi)(c+di)=(ac-b
matlab三角函数和指数形式的转换,将复数化为三角表示式和指数表示式 复数怎么转化为指数形式...
weixin_39601743的博客
04-06 1万+
导航:网站首页 >将复数化为三角表示式和指数表示式 复数怎么转化为指数形式复数化为三角表示式和指数表示式 复数怎么转化为指数形式相关问题:匿名网友:将复数化为三角表示式和指数表示式是:复数z=a+bi有三角表示式z=rcosθ+irsinθ,可以化为指数表示式z=r*exp(iθ)。exp()为自然对数的底e的指数函数。即:exp(iθ)=cosθ+isinθ。 证明可以通过幂级数展开或对...
复数的代数形式怎么转为e是指数形式
热门推荐
鸟宿江边树的博客
07-06 8万+
根据欧拉公式:公式中,e是自然对数底,i是虚数单位。将上面欧拉公式变换成下面复平面的形式:直角三角形边长公式:推导出:正弦、余弦及正切定义式:上面都是要准备的资料,下面开始推导复数代数形式转换为e指数形式,设有一复数: a + jb ...
第六讲 复数和复指数
小访客的博客
10-12 2万+
一,复数的除法:        复数变实数,需要用到共轭性质:,, 二,计算:        分子分母同乘以分母的共轭复数: 三,复数的极坐标形式: r:模        :幅角 四,欧拉公式: 输入的是实数,输出的是复数,它的一般形式是,这种函数叫实变量复(数)值函数 五,指数函数的性质: 指数函数的运算法则(指数率):,或者; 的求导法则:,或者 当时:,或者 ...
复变函数-复指数形式
minato_wdz的博客
03-01 961
复变函数-负指数函数-欧拉公式
复数&欧拉公式
html_finder的博客
02-04 5951
麻雀虽小,五脏俱全
复数的复指数表示形式
最新发布
smalltorch的博客
04-15 1518
最近在做题的时候经常碰到复数指数形式表达,之前没有怎么接触过。在这里做一个笔记,方便查阅。
复数指数初学(一)
lihongtao8209的专栏
05-20 309
已知z=x+yi
三角函数和复指数函数的转化_三角函数与复数
weixin_39548776的博客
11-23 6914
这篇文章主要是面向高中水平的读者的,我们以另外一个视角串联高中所学的部分知识。首先,我们首先考虑这样一个问题,如何表示二维平面(平面直角坐标系)上的点?显然,用实数对就行了, 就表示了全部的点。那么还有别的办法吗?极坐标也可以, 也就表示了全部的点。接下来,我们引入复数,显然,每一个二次方程都可以写作 的形式,当 时方程是没有实根的,为了让它有实根我们引入复数,并将实数的运算性质延伸到复数...
复数,实数,幂函数,指数函数
Sprite5的博客
05-17 3571
复数复数:集合符号为C ,包含实数和虚数。我们把形如z = a + bi(a,b均为实数)的数称为复数。其中a称为实部,b称为虚部,i称为虚数单位。 实数: 实数:集合符号R,由有理数和无理数构成。 虚数: 形如z = a + b*i(b ≠ 0),a= 0时,为纯虚数,a≠ 0 ,为混虚数 有理数: 有理数:集合符号Q,一般有两种分类方式 正有理数Q+(正整数N+,正分数),0,负有理数(负整数Z-,负分数) 整数,分数 无理数: 也称为无限不循环小数,有正无理数和...
正弦型号,向量,复数复数的代数形式三角形式指数形式,坐标形式,电感,电容。 电感、电容伏安特性
03-05
电路分析是电子工程和电气工程领域中的基础知识,涉及到正弦型号、向量、复数、电感、电容等概念。本文将详细介绍电路分析中的正弦型号和向量表示。 正弦型号是指按正弦规律变化的交流电动势、交流电压、交流电流等...
傅里叶级数的三角形式和傅里叶级数的指数形式.pdf
03-16
傅里叶级数分为三角形式指数形式,两种形式都是为了更好地理解和分析周期性信号。 1. **三角形式的傅立叶级数**: 三角形式的傅立叶级数是将周期信号表示为一系列不同频率的正弦和余弦函数的和。对于定义在区间 ...
复数三角形式41530PPT学习教案.pptx
10-07
复数三角形式复数理论中的一个重要概念,它提供了一种用角度和幅值来表示复数的方法,便于计算和理解复数的性质。在复平面上,一个复数可以表示为点(a, b),其中a是实部,b是虚部,而这个点与原点的距离r是...
MATLAB | 绘制复指数函数 y = exp(j*w*n)的三维图像
Chen_Tianyang的博客
11-06 2万+
本文是是大二下学期《信号与系统》课上做的一道小题,目的是让我们直观地认识复指数在空间中长什么样,并顺带练习一下MATLAB的绘图技巧。本文的主要内容包括实验思路、代码实现和结果展示。
三角函数和复指数函数的转化_高中数学函数超级干货:对数函数&指数函数的解析几何明晰...
weixin_39549312的博客
11-23 6352
说到高中数学中的函数...我们不难想到各种各样的函数线性函数正比例函数反比例函数二次函数幂函数三角函数指数函数对数函数......总之是有不少让我们费尽心思的函数其中有这么一对兄弟总是让我们头疼不已他们就是。。。。。。。。。。。。。。。。。指数函数&对数函数他们总是没完没了反反复复对我们进行着打击于是今天我们决定给各位同学们讲一讲对数函数和指数函数这对欢喜冤家我们先来讲一讲指数函...
信号与系统公式笔记(4)
Geek_of_CSDN的博客
05-01 5407
截图基本上都是来自b站av5868266,齐开悦博士的讲义。 之前的笔记(第二章)重要的是两点:微分方程和卷积(微分方程要理解好,卷积熟练会用就行)。 这次主要是关于连续信号的傅里叶分析(教材里面有三大变换:傅里叶、拉普拉斯、Z,拉普拉斯其实是连续傅里叶的推广,Z其实是离散傅里叶变换的推广。重点还是三大变换)。 重点内容: 连续时间周期信号的傅里叶级数 连续时间建立傅里叶变换 傅里叶级数...
快速傅里叶变换与快速数论变换从站在门外到入门
litble的成(tui)长(fei)史
01-12 6923
前言 litble不会FFT和NTT,是自己太蒻了。 学习数学知识需要耐心,所以也请和蒟蒻litble一样站在门外的人保持耐心来学,加油吧! 另外,litble很好奇,为什么《数学一本通》讲这些东西只讲了半页纸。 复数 参考博客,同时借了张图。 复数的基本定义 虚数单位:i=−1‾‾‾√i=−1i=\sqrt {-1} 对于一个数轴上的实数a,让a×(-1)得到-a,那么a...
三角函数和复指数函数的转化_【A-Level】三角函数积分方法总结
weixin_39768645的博客
11-09 5778
入读国际高中或就读美高的同学普遍三角函数(trigonometric function)学得不是很好,有些还停留在画三角形、按计算器才能计算sin、cos、tan的水平,很大原因是国外教材注重自我探究,通过一系列的循循善诱来给出结论,但国内是反过来的,先给出结论然后给出大量的例子来展现结论。一个很典型的例子就是诱导公式,很多国际高中考试是允许带公式表的,而关于诱导公式有很多,更夸张的是除了一份度制...
欧拉公式和复数指数形式
07-28
欧拉公式是一个数学恒等式,也被称为欧拉公式。它将数学中最重要的几个数字联系在一起,包括自然对数的底e、圆周率π、虚数单位i和自然数的单位1,以及0。这个公式被认为是数学中最令人着迷的公式之一,被一些数学家评价为“上帝创造的公式”\[1\]。 复数指数形式复数的一种表示方法。在中学我们学习了复数及其代数形式的四则运算法则和算律。在大学数学中,我们学习了建立在实数集合上的微积分,称为实分析。同样地,在复数集合上也可以讨论函数、导数、微分、积分等问题,这就是大学数学本科或研究生专业里的一门必修课程,称为复变函数。因此,对于复数的理解是非常重要的\[2\]。 欧拉公式和复数指数形式之间没有直接的联系。欧拉公式是关于实数和虚数的恒等式,而复数指数形式是一种表示复数的方法。欧拉公式是数学中的一个重要定理,而复数指数形式是在复变函数中讨论复数函数时使用的一种表示方法。它们在数学中的应用领域和概念是不同的\[1\]\[2\]。 #### 引用[.reference_title] - *1* *3* [欧拉公式](https://blog.csdn.net/weixin_31900373/article/details/119232687)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [复数三角形式指数形式](https://blog.csdn.net/u011089570/article/details/102685877)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
写文章

热门文章

  • 复数的三角形式与指数形式 61636
  • 手眼标定的两种方式 56836
  • GPUview使用简介 11877
  • glReadPixels读取显存数据并保存图像 11712
  • GLM 中的mat4 11580

分类专栏

  • OglD3d 3篇
  • Shell 2篇
  • Net 2篇
  • Linux 5篇
  • Win 6篇
  • Nginx
  • InterprocessCom
  • Python
  • vs
  • Math 4篇
  • Arm 3篇
  • Android 11篇
  • SLAM 7篇
  • TensorFlow 3篇
  • Unity 2篇

最新评论

  • Ubuntu18.04运行Vins-Fusion

    睦珦121: (optional) rosrun loop_fusion loop_fusion_node ~/catkin_ws/src/VINS-Fusion/config/euroc/euroc_mono_imu_config.yaml 出现bash: 未预期的符号 `rosrun' 附近有语法错误 是咋解决

  • Ubuntu18.04运行Vins-Fusion

    weixin_68459149: 应该是opencv版本冲突 直接用ros自带的opencv版本就好了

  • VINS在Android上的实现

    aidem_brown: 可以的,需要对应配置,根据日志提示调试

  • ICE-BA代码解析

    飞鱼寿司机: 您好 请问做过ice-ba和主流vio的融合吗

  • Ubuntu18.04运行Vins-Fusion

    Rhys___: sudo make install这是make和install一起的

最新文章

  • Eigen使用
  • ICE-BA代码解析
  • Kalibr安装
2023年1篇
2022年2篇
2021年2篇
2020年6篇
2019年7篇
2018年5篇
2017年14篇
2016年3篇
2015年5篇
2014年3篇
2013年7篇

目录

目录

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

玻璃钢生产厂家邯郸佛像玻璃钢景观雕塑商场DM单美陈户外绿地玻璃钢卡通雕塑价格益阳长沙玻璃钢雕塑哪家好玻璃钢柱子雕塑广东玻璃钢雕塑摆件设计厂家水上乐园玻璃钢雕塑杭州玻璃钢花盆市场商场春节美陈大pk雅安玻璃钢雕塑制作厂家云南商场节庆美陈雕塑加工咸阳公园玻璃钢雕塑生产厂家石家庄玻璃钢景观雕塑唐山火烈鸟玻璃钢雕塑公司河南季节性商场美陈价格河南玻璃钢小羊动物雕塑厂家宜宾玻璃钢仿铜雕塑东营校园玻璃钢雕塑制作房山玻璃钢卡通雕塑心形美陈 商场美陈清远市浮雕龙凤双喜玻璃钢雕塑商场美陈会带来什么安徽欧式玻璃钢雕塑生产厂家邢台附近玻璃钢雕塑公园水景玻璃钢景观雕塑加工南京佛像玻璃钢雕塑定制山东中庭商场美陈现价萍乡户内玻璃钢雕塑销售电话玻璃钢农耕牛雕塑张家口玻璃钢雕塑加工香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警汪小菲曝离婚始末遭遇山火的松茸之乡雅江山火三名扑火人员牺牲系谣言何赛飞追着代拍打萧美琴窜访捷克 外交部回应卫健委通报少年有偿捐血浆16次猝死手机成瘾是影响睡眠质量重要因素高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了小米汽车超级工厂正式揭幕中国拥有亿元资产的家庭达13.3万户周杰伦一审败诉网易男孩8年未见母亲被告知被遗忘许家印被限制高消费饲养员用铁锨驱打大熊猫被辞退男子被猫抓伤后确诊“猫抓病”特朗普无法缴纳4.54亿美元罚金倪萍分享减重40斤方法联合利华开始重组张家界的山上“长”满了韩国人?张立群任西安交通大学校长杨倩无缘巴黎奥运“重生之我在北大当嫡校长”黑马情侣提车了专访95后高颜值猪保姆考生莫言也上北大硕士复试名单了网友洛杉矶偶遇贾玲专家建议不必谈骨泥色变沉迷短剧的人就像掉进了杀猪盘奥巴马现身唐宁街 黑色着装引猜测七年后宇文玥被薅头发捞上岸事业单位女子向同事水杯投不明物质凯特王妃现身!外出购物视频曝光河南驻马店通报西平中学跳楼事件王树国卸任西安交大校长 师生送别恒大被罚41.75亿到底怎么缴男子被流浪猫绊倒 投喂者赔24万房客欠租失踪 房东直发愁西双版纳热带植物园回应蜉蝣大爆发钱人豪晒法院裁定实锤抄袭外国人感慨凌晨的中国很安全胖东来员工每周单休无小长假白宫:哈马斯三号人物被杀测试车高速逃费 小米:已补缴老人退休金被冒领16年 金额超20万

玻璃钢生产厂家 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化