15-P-PCA从概率角度思考PCA主成分分析

148 篇文章 28 订阅
订阅专栏

1.数据定义

我们知道主成分分析PCA主要是将原始样本数据X从p维度降到q维,是对原始特征空间的重构。我们假设Z是重构空间,X是原始空间;
X ∈ R p , Z ∈ R q , q < p ; z = l a t e n t − v a r i a b l e ( 隐 变 量 ) ; x = o b s e r v e d − d a t a ( 观 测 数 据 ) ; (1) X\in \mathbb{R}^p,Z \in \mathbb{R}^q,q<p;z=latent-variable(隐变量);x=observed-data(观测数据);\tag{1} XRp,ZRq,q<p;z=latentvariable()x=observeddata()(1)
我们给z一个先验 Z ∼ N ( 0 q , I q ) ; 假 设 X 与 Z 满 足 线 性 关 系 X = W Z + μ + ϵ ; Z \sim N(0_q,I_q);假设X与Z满足线性关系X=WZ+\mu+\epsilon; ZN(0qIq);XZ线X=WZ+μ+ϵ;
噪 声 ϵ ∼ N ( 0 , σ 2 I p ) ; 噪 声 ϵ 独 立 于 Z ; 噪声\epsilon\sim N(0,\sigma^2I_p);噪声\epsilon 独立于Z; ϵN(0,σ2Ip)ϵZ;
线性高斯模型:
1.隐变量z和观测量x是线性关系;
2.噪声服从高斯分布, σ 2 I p 是 对 角 线 值 均 为 σ 2 的 对 角 矩 阵 ; 这 个 矩 阵 为 各 向 同 性 矩 阵 \sigma^2I_p是对角线值均为\sigma^2的对角矩阵;这个矩阵为各向同性矩阵 σ2Ip线σ2
P-PCA:
infernece:p(z|x)
learning: w , μ , σ 2 w,\mu,\sigma^2 w,μ,σ2—>EM算法

1.1 GMM与P-PCA区别

对于GMM来说,隐变量Z是离散的;对于P-PCA来说,隐变量Z是连续的
在这里插入图片描述

2.模型图

在这里插入图片描述

  1. 在高斯分布图中取一点Z,得到P(Z),再在线性变换中得到X=WZ
  2. 在线性直线上得到WZ+μ+ε;此时的数值是以wz+μ为中心,以 σ 2 为 半 径 的 圆 , 不 断 的 采 集 Z , 就 可 以 得 到 不 同 的 各 向 同 性 圆 \sigma^2为半径的圆,不断的采集Z,就可以得到不同的各向同性圆 σ2Z
  3. P(X)就是以w为轴方向的各向分布圆,如图所示;

3.模型推断

3.1 求P(X|Z)分布

∵ z ∼ N ( 0 , I ) ; X = W Z + μ + ϵ ; ϵ ∼ N ( 0 , σ 2 I ) , ϵ ⊥ z ; \because z \sim N(0,I);X=WZ+\mu+\epsilon;\epsilon \sim N(0,\sigma^2I),\epsilon \perp z; zN(0,I)X=WZ+μ+ϵϵN(0,σ2I),ϵz;

∴ E ( X ∣ Z ) = E ( W Z + μ + ϵ ) = W Z + μ + E ( ϵ ) = W Z + μ ; ( 注 : 此 时 Z 是 已 知 常 量 ) \therefore E(X|Z)=E(WZ+\mu+\epsilon)=WZ+\mu+E(\epsilon)=WZ+\mu;(注:此时Z是已知常量) E(XZ)=E(WZ+μ+ϵ)=WZ+μ+E(ϵ)=WZ+μ;(Z)

∴ D ( X ∣ Z ) = D ( W Z + μ + ϵ ) = W Z + μ + E ( ϵ ) = 0 + σ 2 I ; \therefore D(X|Z)=D(WZ+\mu+\epsilon)=WZ+\mu+E(\epsilon)=0+\sigma^2I; D(XZ)=D(WZ+μ+ϵ)=WZ+μ+E(ϵ)=0+σ2I;

P ( X ∣ Z ) ∼ N ( W Z + μ , σ 2 I ) (2) P(X|Z)\sim N(WZ+\mu,\sigma^2I)\tag{2} P(XZ)N(WZ+μ,σ2I)(2)

3.2 求P(X)分布

∴ E ( X ) = E ( W Z + μ + ϵ ) = W E ( Z ) + μ + E ( ϵ ) = 0 + μ + 0 = μ ( 注 : 此 时 Z 是 自 变 量 ) \therefore E(X)=E(WZ+\mu+\epsilon)=WE(Z)+\mu+E(\epsilon)=0+\mu+0=\mu(注:此时Z是自变量) E(X)=E(WZ+μ+ϵ)=WE(Z)+μ+E(ϵ)=0+μ+0=μ(Z)

∴ D ( X ) = D ( W Z + μ + ϵ ) = W D ( Z ) W T + 0 + D ( ϵ ) = W I W T + σ 2 I ( 注 : 此 时 Z 是 自 变 量 ) \therefore D(X)=D(WZ+\mu+\epsilon)=WD(Z)W^T+0+D(\epsilon)=WIW^T+\sigma^2I(注:此时Z是自变量) D(X)=D(WZ+μ+ϵ)=WD(Z)WT+0+D(ϵ)=WIWT+σ2I(Z)
P ( X ) ∼ N ( μ , W I W T + σ 2 I ) (3) P(X)\sim N(\mu,WIW^T+\sigma^2I) \tag{3} P(X)N(μ,WIWT+σ2I)(3)

3.3引用高斯分布中,已知联合概率求条件概率公式

链接如下: 14-高斯分布基础知识
已 知 : X = ( x a x b ) ; m + n = p ; μ = ( μ a μ b ) ; Σ = ( Σ a a Σ a b Σ b a Σ b b ) ; Σ a b = Σ b a T (4) 已知:X= \begin{pmatrix} x_a\\\\x_b \end{pmatrix};m+n=p;\mu= \begin{pmatrix} \mu_a\\\\\mu_b \end{pmatrix};\Sigma= \begin{pmatrix} \Sigma_{aa}&\Sigma_{ab}\\\Sigma_{ba}&\Sigma_{bb} \end{pmatrix};\Sigma_{ab}=\Sigma_{ba}^T \tag {4} X=xaxb;m+n=p;μ=μaμb;Σ=(ΣaaΣbaΣabΣbb);Σab=ΣbaT(4)
求 边 缘 概 率 p ( x a ) , 条 件 概 率 p ( x b ∣ x a ) 求边缘概率p(x_a),条件概率p(x_b|x_a) p(xa),p(xbxa)
构造相关变量:
x b ⋅ a = x b − Σ b a Σ a a − 1 x a (5) x_{b \cdot a}=x_{b}-\Sigma_{ba}\Sigma_{aa}^{-1}x_a \tag{5} xba=xbΣbaΣaa1xa(5)
μ b ⋅ a = μ b − Σ b a Σ a a − 1 μ a (6) \mu_{b \cdot a}=\mu_{b}-\Sigma_{ba}\Sigma_{aa}^{-1}\mu_a \tag{6} μba=μbΣbaΣaa1μa(6)
Σ b b ⋅ a = Σ b b − Σ b a Σ a a − 1 Σ a b (7) \Sigma_{bb \cdot a}=\Sigma_{bb}-\Sigma_{ba}\Sigma_{aa}^{-1}\Sigma_{ab} \tag{7} Σbba=ΣbbΣbaΣaa1Σab(7)
x b ⋅ a ∼ N ( μ b ⋅ a , Σ b b ⋅ a ) (8) x_{b \cdot a}\sim N(\mu_{b \cdot a},\Sigma_{bb \cdot a})\tag{8} xbaN(μba,Σbba)(8)
E [ x b ∣ x a ] = μ b + Σ b a Σ a a − 1 ( x a − μ a ) (9) \mathbb{E}[x_{b}|x_a]=\mu_{b}+\Sigma_{ba}\Sigma_{aa}^{-1}(x_a-\mu_a)\tag{9} E[xbxa]=μb+ΣbaΣaa1(xaμa)(9)
D [ x b ∣ x a ] = Σ b b − Σ b a Σ a a − 1 Σ a b (10) \mathbb{D}[x_{b}|x_a]=\Sigma_{bb}-\Sigma_{ba}\Sigma_{aa}^{-1}\Sigma_{ab} \tag{10} D[xbxa]=ΣbbΣbaΣaa1Σab(10)
结 论 : p ( x b ∣ x a ) ∼ N [ μ b + Σ b a Σ a a − 1 ( x a − μ a ) , Σ b b − Σ b a Σ a a − 1 Σ a b ] (11) 结论:p(x_b|x_a)\sim N[\mu_{b}+\Sigma_{ba}\Sigma_{aa}^{-1}(x_a-\mu_a),\Sigma_{bb}-\Sigma_{ba}\Sigma_{aa}^{-1}\Sigma_{ab}] \tag{11} p(xbxa)N[μb+ΣbaΣaa1(xaμa),ΣbbΣbaΣaa1Σab](11)

3.4构造相关函数

3.4.1 令M为X,Z组合函数

M = ( x z ) ; P ( x ) ∼ N ( μ , W I W T + σ 2 I ) ; P ( z ) ∼ N ( 0 , I ) (12) M= \begin{pmatrix} x\\\\z \end{pmatrix};P(x)\sim N(\mu,WIW^T+\sigma^2I);P(z) \sim N(0,I) \tag{12} M=xz;P(x)N(μ,WIWT+σ2I);P(z)N(0,I)(12)
M = ( x z ) ∼ N ( ( μ x   μ z ) , ( Σ x x Σ x z Σ z x Σ z z ) ) (13) M= \begin{pmatrix} x\\\\z \end{pmatrix}\sim N( \begin{pmatrix} \mu_x\\\\\ \mu_z \end{pmatrix}, \begin{pmatrix} \Sigma_{xx}&\Sigma_{xz}\\\Sigma_{zx}&\Sigma_{zz} \end{pmatrix}) \tag{13} M=xzN(μx μz,(ΣxxΣzxΣxzΣzz))(13)
Σ x x = D ( x ) = W I W T + σ 2 I ; Σ z z = D ( Z ) = I ; Σ x z = C o v ( x z ) (14) \Sigma_{xx}=D(x)=WIW^T+\sigma^2I;\Sigma_{zz}=D(Z)=I;\Sigma_{xz}=Cov(xz)\tag{14} Σxx=D(x)=WIWT+σ2I;Σzz=D(Z)=I;Σxz=Cov(xz)(14)\

3.4.2求COV(X,Z)

C o v ( x z ) = E [ ( x − μ x ) ( z − μ z ) T ] Cov(xz)=E[(x-\mu_x)(z-\mu_z)^T] Cov(xz)=E[(xμx)(zμz)T]

= E [ ( x − μ ) ( z ) T ] =E[(x-\mu)(z)^T] =E[(xμ)(z)T]

= E [ ( w z + μ + ϵ − μ ) ( z ) T ] =E[(wz+\mu+\epsilon-\mu)(z)^T] =E[(wz+μ+ϵμ)(z)T]

= E [ ( w z + ϵ ) z T ] =E[(wz+\epsilon)z^T] =E[(wz+ϵ)zT]

= E [ ( w z ) z T + ϵ z T ] =E[(wz)z^T+\epsilon z^T] =E[(wz)zT+ϵzT]

= E [ ( w z ) z T + ϵ z T ] =E[(wz)z^T+\epsilon z^T] =E[(wz)zT+ϵzT]

= w E [ z 2 ] + E [ ϵ ] E [ z T ] =wE[z^2]+E[\epsilon]E[ z^T] =wE[z2]+E[ϵ]E[zT]

注 : E ( z 2 ) = D ( z ) + [ E ( Z ) ] 2 = I ; E ( ϵ ) = 0 注:E(z^2)=D(z)+[E(Z)]^2=I;E(\epsilon)=0 E(z2)=D(z)+[E(Z)]2=I;E(ϵ)=0

= w E [ z 2 ] + E [ ϵ ] E [ z T ] =wE[z^2]+E[\epsilon]E[ z^T] =wE[z2]+E[ϵ]E[zT]

= w I = w =wI=w =wI=w
C o v ( X , Z ) = W (15) Cov(X,Z)=W\tag{15} Cov(X,Z)=W(15)
结 论 : M = ( x z ) ∼ N ( ( μ    0 ) , ( W I W T + σ 2 I W W T I ) ) (16) 结论:M= \begin{pmatrix} x\\\\z \end{pmatrix}\sim N( \begin{pmatrix} \mu\\\\\ \ 0 \end{pmatrix}, \begin{pmatrix} WIW^T+\sigma^2I&W\\W^T&I \end{pmatrix}) \tag{16} M=xzN(μ  0,(WIWT+σ2IWTWI))(16)
由3.4.1结论可得:
结 论 : p ( z ∣ x ) ∼ N [ μ z + Σ z x Σ x x − 1 ( x − μ x ) , Σ z z − Σ z x Σ x x − 1 Σ x z ] (17) 结论:p(z|x)\sim N[\mu_{z}+\Sigma_{zx}\Sigma_{xx}^{-1}(x-\mu_x),\Sigma_{zz}-\Sigma_{zx}\Sigma_{xx}^{-1}\Sigma_{xz}] \tag{17} p(zx)N[μz+ΣzxΣxx1(xμx),ΣzzΣzxΣxx1Σxz](17)
E ( Z ∣ X ) = W T ( W I W T + σ 2 I ) − 1 ( X − μ ) (18) \mathbb{E}(Z|X)=W^T(WIW^T+\sigma^2I)^{-1}(X-\mu) \tag{18} E(ZX)=WT(WIWT+σ2I)1(Xμ)(18)
D ( Z ∣ X ) = I − W T ( W I W T + σ 2 I ) − 1 W (19) \mathbb{D}(Z|X)=I-W^T(WIW^T+\sigma^2I)^{-1}W \tag{19} D(ZX)=IWT(WIWT+σ2I)1W(19)

3.5结论

结 果 : p ( z ∣ x ) ∼ N [ W T ( W I W T + σ 2 I ) − 1 ( X − μ ) , I − W T ( W I W T + σ 2 I ) − 1 W ] (20) 结果:p(z|x)\sim N[W^T(WIW^T+\sigma^2I)^{-1}(X-\mu),I-W^T(WIW^T+\sigma^2I)^{-1}W] \tag{20} p(zx)N[WT(WIWT+σ2I)1(Xμ),IWT(WIWT+σ2I)1W](20)

PyTorch 深度学习 || 5. 生成模型 | Ch5.1 概率主成分分析(Probabilistic Principal Component Analysis, PPCA )
weixin_40234309的博客
06-27 170
ok
论文研究-概率主成分分析及其应用.pdf
09-08
主成分分析PCA)、核主成分分析(KPCA)和概率主成分分析(PPCA)是已经取得广泛应用的特征提取方法。提出一种基于概率主成分分析(PKPCA)的检测液晶屏幕亮点的方法。作为对PPCA的一种非线性扩展,PKPCA在PPCA的基础上引入了核函数方法,因而其捕获模式非线性特征的能力更强。在KPCA和PPCA的基础上推导了PKPCA过程公式,并在检测液晶屏幕亮点的应用中将PKPCA、PPCAPCA算法进行比较。实验结果表明,PKPCA的检测率和局部信噪比优于其他两者。
MPPCA概率主成分的混合。 用于聚类,密度估计,数据重建,噪声消除
02-10
概率主成分分析仪(MPPCA)的混合物 安装 将存储库的内容复制到您喜欢的位置 git clone git@github.com:SamuelePolimi/MPPCA.git cd MPPCA 并安装库 cd ../.. pip install -e . 具有循环数据的第一个示例 让我们生成一些圆形的数据 n_samples = 500 theta = np . random . uniform ( - np . pi , np . pi , size = n_samples ) x_1 = np . sin ( theta ) x_2 = np . cos ( theta ) r = np . random . normal ( scale = 0.1 , size = n_samples ) + 1. X = np . array ([ x_1 * r , x_2 * r ]).
【白板推导系列笔记】降维-主成分分析-概率角度(Probabilistic PCA
liu20020918zz的博客
10-05 675
PPCA假设所有的样本点取自某个分布X∈RpX \in \mathbb{R}^{p}X∈Rp,对应的每个点xix_{i}xi​,都有一个ziz_{i}zi​与之对应,取样与某个分布Z∈Rq(q
概率主成分分析
lijiankou的专栏
10-31 6945
前面介绍了主成分分析,概率主成分分析是对主成分分析概率上的一种推广。 概率的引入,为主成分分析带来极大的好处。下面简单介绍概率主成分分析的 导出以及和主成分分析的关系。 在概率主成分分析里面,假设预测数据x是由一个隐变量z生成的,并且隐变量z以及条件概率p(x|z)均服从高斯分布。 根据高斯分布的性质,x的边缘分布p(x)也服从高斯分布, 因为有了
概率pca(probabilistic pca)的理解
热门推荐
janehong1314的博客
12-10 1万+
ppca原理     pca 可以从很多角度来理解,今天来谈一谈不太知名的ppca。所谓概率pca, 就是构建一个概率模型,对于一个数据 , 可以认为这样生成的,,   是维, , 是均值为0,方差为  的 维高斯随机向量,, 是均值为0 , 方差为  的  维高斯随机向量, 和  独立。 是未知参数,把  看成隐变量,对  降维的结果,就是要求出它在低维空间的隐变量,但是隐变量是随机变量,因此我...
gauss-fitting-and-PCA.zip_PCA拟合_拟合高斯函数_高斯函数拟合_高斯拟合
07-15
在数据分析和机器学习领域,高斯函数拟合与主成分分析PCA)是两种非常重要的技术,它们在处理数据和提取关键特征时发挥着至关重要的作用。本篇将详细阐述这两种方法及其应用。 高斯函数,又称为正态分布或钟形...
Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析
09-05
本教程将深入探讨Sklearn中的一些核心机器学习算法,包括线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、K近邻(KNN)以及PCA主成分分析。 1. **线性回归**:线性回归是一种预测模型,用于寻找变量之间的线性关系。...
机器学习+主成分分析PCA)+置信椭圆绘图
03-08
主成分分析 (Principal Component Analysis, PCA) 是一种统计方法,通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。PCA 的主要应用有:降维、特征提取、去噪、故障...
概率 PCA 和因子分析:用于拟合 PCA 和 FA 模型的 EM 算法。 这是降维的概率处理。-matlab开发
05-30
这个包提供了几个主要使用EM算法来拟合概率PCA和因子分析模型的函数。 PPCAPCA模型的概率对应物。 PPCA 的优点是可以进一步扩展到更高级的模型,例如混合 PPCA、Bayeisan PPCA 或处理缺失数据的模型等。但是,该包主要用于人们理解模型的研究和教学目的。 代码简洁,易于阅读和学习。 该软件包现在是PRML工具箱的一部分( http://cn.mathworks.com/help/stats/ppca.html )。
PCA主成分分析(Principal Component Analysis)
12-25
### PCA主成分分析(Principal Component Analysis) #### 一、引言 主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术,在数据分析、模式识别、机器学习等领域有着广泛的应用。通过PCA...
主成分分析(PCA),概率主成分分析(PPCA)和因子分析(FA)的区别?
Jie Qiao的专栏
04-12 4855
介绍 在PCA中,有一份样本为n,维度为d的数据X∈Rn×d\displaystyle X\in \mathbb{R}^{n\times d}X∈Rn×d,我们希望降维,于是: X≈ZWT X\approx ZW^{T} X≈ZWT 而Probabilistic PCA则是假设 x∼N(Wz,σ2I),  z∼N(0,I) x\sim \mathcal{N}\left( Wz,...
机器学习-白板推导 P5_6 (P-PCA)
qq_28404829的博客
09-09 651
机器学习-白板推导 P5_6 P-PCA P-PCA x∈Rpz∈Rqq&lt;px \in R^p \quad z \in R^q \quad q&lt;px∈Rpz∈Rqq<p x,observe&ThickSpace;datax,observe\;datax,observedata z,latent&ThickSpace;variablez,latent...
2020-3-6 深度学习笔记13 - 线性因子模型 1(降维技术:概率主成分分析PCA和因子分析,独立成分分析ICA)
weixin_42555985的博客
03-28 877
第十三章 线性因子模型 官网 原版 许多深度学习算法被设计为处理无监督学习问题,但不像深度学习已经在很大程度上解决了各种任务的监督学习问题,没有一个算法能以同样的方式真正解决无监督学习问题。 无监督学习困难的核心原因是被建模的随机变量的高维度。这带来了两个不同的挑战:统计挑战和计算挑战。 统计挑战与泛化相关:我们可能想要区分的配置数会随着感兴趣的维度数指数增长,并且这快速变得比可能具有的(或者在有...
机器学习导论(张志华):概率PCA
去向前方的博客
11-04 1688
前言 这个笔记是北大那位老师课程的学习笔记,讲的概念浅显易懂,非常有利于我们掌握基本的概念,从而掌握相关的技术。 basic concepts PCA:XTHHXX^THHX XTHHX PCO:HXXH=HkXPCO :HXXH=HkXPCO:HXXH=HkX Duality:KPCA; 通过增加约束,从而求解问题,更易优化问题。 Y X。 优化方法常规是将拉格朗日约束加进去。 简单来说,公式推...
超越数据的确定性:通过概率主成分分析拥抱不确定性
最新发布
安静的软件工程师
05-03 644
超越数据的确定性:通过概率主成分分析拥抱不确定性
概率PCA在网络流量分析中的应用: 异常检测和网络安全
AI天才研究院
12-26 722
1.背景介绍 网络流量分析是网络安全和性能监控中的一个重要组成部分。随着互联网的发展,网络流量的规模和复杂性不断增加,传统的网络监控方法已经不能满足现实中的需求。因此,需要开发更高效、更智能的网络流量分析方法。概率PCA(Probabilistic PCA)是一种概率模型,可以用于处理高维数据和异常检测。在本文中,我们将讨论概率PCA在网络流量分析中的应用,包括异常检测和网络安全。 2.核心概...
主成分分析PCA,Principal Component Analysis)
知至
04-24 588
数据降维方法 降维方法 线性or非线性 监督方式 主成分分析(Principal Component Analysis,PCA ) 线性 无监督 MDS 线性 无监督 LDA 线性 有监督 等距离映射(isometric mapping,ISOMAP) 非线性 局部线性嵌入(Local Linear Embedding,LLE) 非线性 PCA主要思想和原理...
312
原创
1941
点赞
2941
收藏
1211
粉丝
关注
私信
写文章

热门文章

  • 李沐动手学深度学习pytorch :问题:找不到d2l包,No module named ‘d2l’ 38740
  • pytorch中 reshape函数解析 22937
  • jupyter notebook内核挂掉了,需要重启 20611
  • yolov5-调用GPU 15032
  • %matplotlib inline 在pycharm 中显示 11260

分类专栏

  • pytorch 148篇
  • 线性代数 7篇
  • 代码 18篇
  • 信号与系统
  • python 75篇
  • CUDA 1篇
  • leetcode 1篇
  • 入门学习笔记 6篇
  • matplot 1篇
  • pandas 2篇
  • numpy 1篇
  • 动手学深度学习-pytorch李沐版 8篇
  • 笔记
  • Anaconda

最新评论

  • Timer 计时器

    码农阿豪@新空间代码工作室: 读完这篇博客后真是受益匪浅,作者的分析条理清晰、见解独到,非常感谢分享!希望能一起探讨更多技术话题

  • 李沐动手学深度学习pytorch :问题:找不到d2l包,No module named ‘d2l’

    yumi-9: 我也是这样的 为什么还是显示找不到呢

  • 线性代数|机器学习-P22逐步最小化一个函数

    取个名字真难呐: 个人感觉老教授讲得宽泛了,横跨很多知识点,不适合入门用。需要配合其他视频一起食用

  • 随机采样和顺序分区

    uglyBreeze: 为了数据多呗,如果随机指定说不定指导最后一个位置了,那整个语料库就生成0条样本,还训个啥

  • 线性代数|机器学习-P11方程Ax=b求解研究

    征途黯然.: The description of 线性代数机器学习P11方程Axb求解研究 is very vivid and has given me a deeper insight. I hope to see more content about 线性代数机器学习P11方程Axb求解研究 in the future!表情包

最新文章

  • Standard_Matrix
  • One_Matrix
  • Timer 计时器
2024
10月 4篇
09月 10篇
08月 2篇
07月 21篇
06月 18篇
05月 27篇
04月 3篇
03月 11篇
01月 1篇
2023年11篇
2022年108篇
2021年98篇

目录

目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

玻璃钢生产厂家南乐玻璃钢雕塑厂家小品玻璃钢卡通雕塑怎么样玻璃钢人像雕塑联系方式玻璃钢鹿雕塑专线嘉兴卡通雕塑玻璃钢延安卡通玻璃钢雕塑公司商场美陈提案 ppt扬帆造型玻璃钢雕塑常见玻璃钢花盆费用东莞玻璃钢鱼雕塑定制安徽玻璃钢樱桃雕塑设计铜玻璃钢雕塑厂河南玻璃钢人物雕塑价格商场美陈过期处理洛阳玻璃钢雕塑公司抽象人物玻璃钢雕塑制作盘锦玻璃钢雕塑设计玻璃钢动物雕塑价格厂广东玻璃钢花盆厂东阳人物玻璃钢雕塑制作厂玻璃钢动物牛雕塑哪家价格便宜吉安户内玻璃钢雕塑深圳节庆商场美陈生产厂家和县玻璃钢人物雕塑东营卡通玻璃钢雕塑定制商场美陈食品展最好的玻璃钢花盆制品金华户外玻璃钢雕塑常州动物玻璃钢雕塑价格动物玻璃钢雕塑定做香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声单亲妈妈陷入热恋 14岁儿子报警汪小菲曝离婚始末遭遇山火的松茸之乡雅江山火三名扑火人员牺牲系谣言何赛飞追着代拍打萧美琴窜访捷克 外交部回应卫健委通报少年有偿捐血浆16次猝死手机成瘾是影响睡眠质量重要因素高校汽车撞人致3死16伤 司机系学生315晚会后胖东来又人满为患了小米汽车超级工厂正式揭幕中国拥有亿元资产的家庭达13.3万户周杰伦一审败诉网易男孩8年未见母亲被告知被遗忘许家印被限制高消费饲养员用铁锨驱打大熊猫被辞退男子被猫抓伤后确诊“猫抓病”特朗普无法缴纳4.54亿美元罚金倪萍分享减重40斤方法联合利华开始重组张家界的山上“长”满了韩国人?张立群任西安交通大学校长杨倩无缘巴黎奥运“重生之我在北大当嫡校长”黑马情侣提车了专访95后高颜值猪保姆考生莫言也上北大硕士复试名单了网友洛杉矶偶遇贾玲专家建议不必谈骨泥色变沉迷短剧的人就像掉进了杀猪盘奥巴马现身唐宁街 黑色着装引猜测七年后宇文玥被薅头发捞上岸事业单位女子向同事水杯投不明物质凯特王妃现身!外出购物视频曝光河南驻马店通报西平中学跳楼事件王树国卸任西安交大校长 师生送别恒大被罚41.75亿到底怎么缴男子被流浪猫绊倒 投喂者赔24万房客欠租失踪 房东直发愁西双版纳热带植物园回应蜉蝣大爆发钱人豪晒法院裁定实锤抄袭外国人感慨凌晨的中国很安全胖东来员工每周单休无小长假白宫:哈马斯三号人物被杀测试车高速逃费 小米:已补缴老人退休金被冒领16年 金额超20万

玻璃钢生产厂家 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化